98%
921
2 minutes
20
Aspirin is considered a potential confound for functional magnetic resonance imaging (fMRI) studies. This is because aspirin affects the synthesis of prostaglandin, a vasoactive mediator centrally involved in neurovascular coupling, a process underlying blood oxygenated level dependent (BOLD) responses. Aspirin-induced changes in BOLD signal are a potential confound for fMRI studies of at-risk individuals or patients (e.g. with cardiovascular conditions or stroke) who receive low-dose aspirin prophylactically and are compared to healthy controls without aspirin. To examine the severity of this potential confound, we combined high field (7 Tesla) MRI during a simple hand movement task with a biophysically informed hemodynamic model. We compared elderly individuals receiving aspirin for primary or secondary prophylactic purposes versus age-matched volunteers without aspirin medication, testing for putative differences in BOLD responses. Specifically, we fitted hemodynamic models to BOLD responses from 14 regions activated by the task and examined whether model parameter estimates were significantly altered by aspirin. While our analyses indicate that hemodynamics differed across regions, consistent with the known regional variability of BOLD responses, we neither found a significant main effect of aspirin (i.e., an average effect across brain regions) nor an expected drug × region interaction. While our sample size is not sufficiently large to rule out small-to-medium global effects of aspirin, we had adequate statistical power for detecting the expected interaction. Altogether, our analysis suggests that patients with cardiovascular risk receiving low-dose aspirin for primary or secondary prophylactic purposes do not show strongly altered BOLD signals when compared to healthy controls without aspirin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.14970 | DOI Listing |
Comput Biol Med
September 2025
Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFMultivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
fMRI unit, Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem, Israel.
Purpose: Behavioral and electrophysiological studies have shown that vision is slower under scotopic conditions (dark, activating only rods) than photopic conditions (light, activating only cones). However, slower scotopic processing cannot be solely explained by findings that rod signals are slower than cone signals, and it is unknown whether temporal processing differences persist in cortex. Flickering stimuli have previously been used in functional MRI (fMRI) studies to probe photopic cortical temporal sensitivity.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905.
The human brain dynamically adapts to hypoxia, a reduction in oxygen essential for metabolism. The brain's adaptive response to hypoxia, however, remains unclear. We investigated dynamic functional connectivity (FC) in healthy adults under acute hypoxia (FiO = 7.
View Article and Find Full Text PDF