RGF1-RGI1, a Peptide-Receptor Complex, Regulates Arabidopsis Root Meristem Development via a MAPK Signaling Cascade.

Mol Plant

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root growth is maintained by the continuous division of cells in the apical meristem. ROOT MERISTEM GROWTH FACTOR 1 (RGF1) is a critical peptide hormone regulating root stem cell niche maintenance. Previous studies discovered that five closely related leucine-rich repeat receptor-like protein kinases (LRR-RLKs), named RGF1 INSENSITIVES (RGIs) or RGF1 RECEPTORS (RGFRs), are able to perceive the RGF1 signal and redundantly control root stem cell niche maintenance. RGF1 regulates root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. Regulatory proteins connecting cell surface RGF1-RGI1 and nuclear PLTs, however, were not identified. Here, we report that the mitogen-activated protein (MAP) kinase kinase 4 (MKK4) and MAP kinase 3 (MPK3) were co-immunoprecipitated with RGI1-FLAG after Arabidopsis seedlings were treated with RGF1. Genetic and biochemical assays confirmed that MKK4 and MKK5, and their downstream targets MPK3 and MPK6, are essential RGI-dependent regulators of root meristem development. In addition, we found that the MKK4/MKK5-MPK3/MPK6 module functions downstream of YDA, a MAPKKK. Our results demonstrate that RGF1-RGI1 regulate the expression of PLT1/PLT2 via a YDA-MKK4/MKK5-MPK3/MPK6 signaling cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2020.09.005DOI Listing

Publication Analysis

Top Keywords

root meristem
16
meristem development
8
signaling cascade
8
root stem
8
stem cell
8
cell niche
8
niche maintenance
8
map kinase
8
root
7
rgf1
6

Similar Publications

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Role of Like Heterochromatin Protein1 (LHP1) in the root apical meristem and stem cell niche maintenance in Arabidopsis.

Plant Sci

September 2025

Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México D.F 04510, Mexico. Electronic address:

Epigenetic regulation by Polycomb Group (PcG) is essential for controlling gene repression. In plants, PcG is involved in all developmental processes, from embryogenesis to floral development, including root development. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) has been described as a PcG component, capable of recognizing the H3K27me3 mark, that together with CLF, a PcG histone methyltransferase, represses gene expression.

View Article and Find Full Text PDF

This article presents a novel perspective on plant embryogenesis, fundamentally differentiating it from the animal embryo model upon which plant models have long been based to discern the genetic and molecular mechanisms. We propose a plant embryonic body plan that aligns developmental and evolutionary insights across all five embryophyte groups (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms). This conceptual model is grounded in a Reprogramming Potential (RP) involving an activation (RP1+) -suppression (RP1-) switch (RP1+/RP1-), which integrates embryonic development in a stepwise manner across diverse embryophytes.

View Article and Find Full Text PDF

The miR444f Regulates Root Development via Gibberellin Metabolic Pathway in Rice.

Plant Cell Environ

September 2025

Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.

MicroRNAs (miRNAs) are critical regulators of root development, further impacting plant growth and environmental adaptability. As an important miRNA family, the role of MIR444 in the root development of rice remains largely unknown. Here, we observed that loss of miR444f, which belongs to the MIR444 family, exhibited significant developmental defects in primary and lateral roots during early growth stages.

View Article and Find Full Text PDF

The CLAVATA signaling pathway regulates plant development and plant-environment interactions. CLAVATA signaling consists of mobile, cell-type or environment-specific CLAVATA3/ESR-related (CLE) peptides, which are perceived by a receptor complex consisting of leucine-rich repeat receptor-like kinases such as CLAVATA1 and receptor-like proteins such as CLAVATA2, which often functions with the pseudokinase CORYNE (CRN). CLAVATA signaling has been extensively studied in various plant species for its developmental role in meristem maintenance.

View Article and Find Full Text PDF