Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed "mimicry embedding," for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to and parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets. In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485691PMC
http://dx.doi.org/10.1128/mSphere.00836-20DOI Listing

Publication Analysis

Top Keywords

data sets
28
mimicry embedding
12
neural networks
12
verified data
12
data
10
neural network
8
deep neural
8
networks dnns
8
dnns analysis
8
hampered lack
8

Similar Publications

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

The huge volcanic eruption at Thera (Santorini), situated in the Aegean Sea, occurred within the Late Minoan IA archaeological period. However, its temporal association with Egyptian history has long been a controversial subject. Traditionally, the eruption was placed in the early 18th Dynasty, associated with Pharaoh Thutmose III as the youngest option or with Pharaoh Nebpehtire Ahmose as the oldest possibility.

View Article and Find Full Text PDF

Identification and prioritization of gene sets associated with schizophrenia risk by network analysis.

Psychopharmacology (Berl)

September 2025

Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.

Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.

Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.

Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.

View Article and Find Full Text PDF

Nisin-like biosynthetic gene clusters are widely distributed across microbiomes.

mBio

September 2025

APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College, Cork, Ireland.

Bacteriocins are antimicrobial peptides/proteins that can have narrow or broad inhibitory spectra and remarkable potency against clinically relevant pathogens. One such bacteriocin that is extensively used in the food industry and with potential for biotherapeutic application is the post-translationally modified peptide, nisin. Recent studies have shown the impact of nisin on the gastrointestinal microbiome, but relatively little is known of how abundant nisin production is in nature, the breadth of existing variants, and their antimicrobial potency.

View Article and Find Full Text PDF

Development of Coarse-Grained Lipid Force Fields Based on a Graph Neural Network.

J Chem Theory Comput

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong China.

Coarse-grained (CG) lipid models enable efficient simulations of large-scale membrane events. However, achieving both speed and atomic-level accuracy remains challenging. Graph neural networks (GNNs) trained on all-atom (AA) simulations can serve as CG force fields, which have demonstrated success in CG simulations of proteins.

View Article and Find Full Text PDF