Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Structured illumination microscopy (SIM) requires polarization control to guarantee the high-contrast illumination pattern. However, this modulated polarization will induce artifacts in SIM when imaging fluorescent dipoles. Here we proposed the polarization weighted recombination of frequency components to reconstruct SIM data with suppressed artifacts and better resolving power. Both the simulation results and experimental data demonstrate that our algorithm can obtain isotropic resolution on dipoles and resolve a clearer structure in high-density sections compared to the conventional algorithm. Our work reinforces the SIM theory and paves the avenue for the application of SIM on a polarized specimen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.395092 | DOI Listing |