A novel weak acid activated probe for highly selective monitoring selenocysteine in living cells.

Talanta

School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Norma

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selenocysteine (Sec, pK 5.8) is genetically encoded 21st amino acid into the active site of selenoproteins, which have broad functions relevant to various diseases, tissues or organs and subcellular organelles. However, many selenoproteins involved cellular functions still remains unclear. In addition, since biothiols such as glutathione (GSH, pK 8.3), possessing similar chemical properties with Sec, commonly exist in living systems at high levels. Thus, it is of great importance and high challenge to identify novel probes for selectively monitoring Sec over biothiols. In this paper, we proposed a smart strategy which allowed us to develop a lysosome targetable probe for specifically sensing Sec. By restricting weak acidic microenvironment, the probe shows a specific detection for Sec with 85-fold fluorescence enhancement owing to the remaining high activity of Sec at pH 5.0. Moreover, being low cytotoxicity to the cells verified by MTS assay, the probe was then successfully applied for imaging exogenous and endogenous Sec in lysosomes, indicating its potential for the biological investigation of Sec in subcellular organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121287DOI Listing

Publication Analysis

Top Keywords

subcellular organelles
8
novel weak
4
weak acid
4
acid activated
4
probe
4
activated probe
4
probe highly
4
highly selective
4
selective monitoring
4
monitoring selenocysteine
4

Similar Publications

A new water soluble mitochondria targeted ESIPT active acylhydrazone for the specific detection of Zn and S ions and bioimaging in HeLa cells.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile. Electronic address:

The development of multifunctional fluorescent organic materials capable of selective ion detection, subcellular targeting, and logical operations is a burgeoning area in chemical biology and materials science. Herein, we report the design and development of a novel acylhydrazone based fluorescent ligand (HSN·Cl), which exhibits a distinct "turn-on" emission response toward Zn ions and a subsequent "turn-off" response in the presence of sulfide ions (S). The molecular design incorporates structural elements that facilitate the ESIPT feature, conferring the probe with unique photophysical properties.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.

View Article and Find Full Text PDF

GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF