Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Electrode misplacement and interchange errors are known problems when recording the 12‑lead electrocardiogram (ECG). Automatic detection of these errors could play an important role for improving clinical decision making and outcomes in cardiac care. The objectives of this systematic review and meta-analysis is to 1) study the impact of electrode misplacement on ECG signals and ECG interpretation, 2) to determine the most challenging electrode misplacements to detect using machine learning (ML), 3) to analyse the ML performance of algorithms that detect electrode misplacement or interchange according to sensitivity and specificity and 4) to identify the most commonly used ML technique for detecting electrode misplacement/interchange. This review analysed the current literature regarding electrode misplacement/interchange recognition accuracy using machine learning techniques.
Method: A search of three online databases including IEEE, PubMed and ScienceDirect identified 228 articles, while 3 articles were included from additional sources from co-authors. According to the eligibility criteria, 14 articles were selected. The selected articles were considered for qualitative analysis and meta-analysis.
Results: The articles showed the effect of lead interchange on ECG morphology and as a consequence on patient diagnoses. Statistical analysis of the included articles found that machine learning performance is high in detecting electrode misplacement/interchange except left arm/left leg interchange.
Conclusion: This review emphasises the importance of detecting electrode misplacement detection in ECG diagnosis and the effects on decision making. Machine learning shows promise in detecting lead misplacement/interchange and highlights an opportunity for developing and operationalising deep learning algorithms such as convolutional neural network (CNN) to detect electrode misplacement/interchange.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2020.08.013 | DOI Listing |