Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aim: Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway.

Materials And Methods: In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays.

Results: The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes.

Conclusion: These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472444PMC
http://dx.doi.org/10.21873/cgp.20205DOI Listing

Publication Analysis

Top Keywords

lactic acid
16
knockout lactate
8
glucose-6-phosphate isomerase
8
ldha/b dko
8
clone set
8
acid
5
whole-transcriptome analysis
4
analysis fully
4
fully viable
4
energy
4

Similar Publications

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Introduction: Fermented buffalo milk products from South Asia remain an underexplored source of microbial diversity with potential health-promoting benefits. This study investigates the probiotic and industrial suitability of lactic acid bacteria (LAB) and non-LAB isolates from traditional Pakistani dairy, addressing gaps in region-specific probiotic discovery.

Methods: Forty-seven bacterial isolates were obtained from fermented buffalo milk products (yogurt and cheese).

View Article and Find Full Text PDF

SLC16A3 (MCT4) expression in tumor immunity and Metabolism: Insights from pan-cancer analysis.

Biochem Biophys Rep

June 2025

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.

Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.

View Article and Find Full Text PDF

Background And Aim: is a significant pathogen in freshwater aquaculture, contributing to high morbidity and mortality in common carp (). Conventional reliance on antibiotics raises concerns about resistance and environmental impact. This study aimed to evaluate the effects of short-term fasting (1 or 2 days) on physiological, oxidative stress, and microbial responses in infected with .

View Article and Find Full Text PDF

Extracting soluble lignin from poplar sawdust via ternary cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment for the fabrication of biodegradable films.

Int J Biol Macromol

September 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:

The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.

View Article and Find Full Text PDF