Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent. The presence of nanoparticles in metastases was monitored and quantified with MRI and was noticed up to 1 week after their administration. To take advantage of the radiosensitizing property of the nanoparticles, patients underwent radiotherapy sessions following their administration. This protocol has been extended to a multicentric phase 2 clinical trial including 100 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439298PMC
http://dx.doi.org/10.1126/sciadv.aay5279DOI Listing

Publication Analysis

Top Keywords

brain metastases
12
phase clinical
8
clinical trial
8
types brain
8
nanoparticles
6
targeting brain
4
metastases
4
metastases ultrasmall
4
ultrasmall theranostic
4
theranostic nanoparticles
4

Similar Publications

Glioblastoma (GB), IDH-wildtype (IDH-wt), is the most prevalent primary malignant brain neoplasm in adults. Despite adjuvant therapy, the prognosis for these tumors remains dismal, with a median survival of around 15-18 months. Although rare, extracranial metastases from GB are reported with increasing frequency, likely due to advancements in follow-up, treatments, and improved patient survival.

View Article and Find Full Text PDF

Diagnostic Value of Centrally Restricted Diffusion in Differentiating Radiation Necrosis from Tumor Progression in Brain Metastases: A Single-Center Observational Study.

J Neuroradiol

September 2025

Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon. 59 Bd Pinel, 69500, Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University. 7 avenue Jean Capelle O, 69100, Villeurbanne, France. Electronic address:

Background: Distinguishing radiation necrosis (RN) from true progression (TP) in irradiated brain metastases is challenging. We evaluated the diagnostic performance of the centrally restricted diffusion sign on diffusion-weighted imaging (DWI).

Methods: From August 2014 to August 2024, we screened 321 patients with histologically confirmed brain metastases treated with radiation therapy and follow-up MRI for new or enlarging necrotic lesions ≥1 cm.

View Article and Find Full Text PDF

Purpose: We report outcomes of repeat stereotactic radiosurgery (rSRS) to sites of tumor progression following initial SRS. Additionally, we sought to determine if, at the time of recurrence following initial SRS, surgical resection of the tumor followed by SRS (surgery + rSRS) provided benefit compared to rSRS alone.

Methods: We retrospectively reviewed patients treated with rSRS for local recurrence after initial SRS.

View Article and Find Full Text PDF

Introduction: Pituitary adenomas (PAs) are generally benign neoplasms, though in rare cases may exhibit aggressive behavior. In 2024, the PANOMEN-3 workshop released a new clinical-pathological classification. The objective of this study was to examine the potential of the PANOMEN-3 classification to predict prognosis of PAs and guide treatment in our single center cohort of patients with PAs.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF