98%
921
2 minutes
20
Predictions of airborne allergenic pollen concentrations at fine spatial scales require information on source plant location and pollen production. Such data are lacking at the urban scale, largely because manually mapping allergenic pollen producing plants across large areas is infeasible. However, modest-sized field surveys paired with allometric equations, remote sensing, and habitat distribution models can predict where these plants occur and how much pollen they produce. In this study, common ragweed () was mapped in a field survey in Detroit, MI, USA. The relationship between ragweed presence and habitat-related variables derived from aerial imagery, LiDAR, and municipal data were used to create a habitat distribution model, which was then used to predict ragweed presence across the study area (392 km). The relationship between inflorescence length and pollen production was used to predict pollen production in the city. Ragweed occurs in 1.7% of Detroit and total pollen production is 312 × 10 pollen grains annually, but ragweed presence was highly heterogeneous across the city. Ragweed was predominantly found in in vacant lots (75%) and near demolished structures (48%), and had varying associations with land cover types (e.g., sparse vegetation, trees, pavement) detected by remote sensing. These findings also suggest several management strategies that could help reduce levels of allergenic pollen, including appropriate post-demolition management practices. Spatially-resolved predictions for pollen production will allow mechanistic modeling of airborne allergenic pollen and improved exposure estimates for use in epidemiological and other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442281 | PMC |
http://dx.doi.org/10.1016/j.landurbplan.2019.103615 | DOI Listing |
Biosens Bioelectron
August 2025
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China. Electronic address:
A critical prerequisite for translating circulating tumor cells (CTCs) detection technologies into clinical practice is achieving high-efficiency capture and non-destructive release of low-abundance CTCs in blood. In recent years, innovative designs and surface modification of bioinspired topological micro/nanostructured materials have provided efficient solutions to capture and release CTCs. Motivated by pollen morphology and multimodal regulation, this study designed pollen-inspired spiky topological magnetic nanoparticles (IP-GSMNs) based on dual-recognition interface and intelligent-response modulation for high-efficiency capture and non-destructive release of CTCs from peripheral whole blood.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom.
Introduction: The autogamous nature of wheat presents a significant challenge for hybrid wheat breeding, which relies on cross-pollination. To facilitate hybrid wheat production, it is essential to modify the floral morphology of wheat to promote outbreeding rather than inbreeding. While some genetic diversity for flower morphology exists within wheat, it is limited compared to the vast and largely untapped genetic variation found in its wild relatives for potentially all agronomically important traits, including flowering characteristics.
View Article and Find Full Text PDFAnn Bot
September 2025
CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.
Background And Aims: Pollen:ovule ratios are often lower in species and populations with higher selfing rates. This may be due either to higher pollination efficiency through selfing, or to lower male competition when less allo-pollen is available. Changes in pollination can also impact pollen traits, such as the number of apertures.
View Article and Find Full Text PDFPhysiol Plant
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
The Gα subunit RGA1, a crucial component of heterotrimeric G proteins, has been well-documented to enhance drought resistance in rice seedlings. However, its role during the reproductive stages has remained unexplored. This study aimed to investigate the function of RGA1 in mitigating drought-induced defects in anther and pollen development during pollen mother cell meiosis with Zhonghua 11 (WT), a Gα-deficient mutant (d1), and an RGA1-overexpressing line (OE-1).
View Article and Find Full Text PDFEnviron Int
August 2025
Department of Molecular Toxicology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany. Electr
Single and mixture exposure to plant protection products (PPPs) can affect non-target organisms at sublethal concentrations, yet the ecological relevance of behavioural effects remains underexplored. Behavioural disruptions can compromise survival and fitness, with exposure occurring across terrestrial and aquatic ecosystems. Here, we assess the behavioural impact of environmentally relevant PPP concentrations on two ecologically and toxicologically important model species: honeybees (Apis mellifera) and zebrafish (Danio rerio).
View Article and Find Full Text PDF