Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m sr nm]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD < 3.78 [mW m sr nm]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471993PMC
http://dx.doi.org/10.3390/s20164553DOI Listing

Publication Analysis

Top Keywords

toa radiances
24
prisma level
8
radiances measured
8
wavelengths prisma
8
situ measurements
8
match-ups prisma
8
prisma situ
8
[mw nm]
8
sentinel-2 data
8
prisma
7

Similar Publications

Given the importance of vector radiative transfer models in ocean color remote sensing and a lack of suitable models capable of analyzing the Earth curvature effects on Mie-scattering radiances, this study presents an enhanced vector radiative transfer model for a spherical shell atmosphere geometry by the Monte Carlo method (MC-SRTM), considering the effects of Earth curvature, different atmospheric conditions, flat sea surface reflectance, polarization, high solar and sensor geometries, altitudes and wavelengths. A Monte Carlo photon transport model was employed to simulate the vector radiative transfer processes and their effects on the top-of-atmosphere (TOA) radiances. The accuracy of the MC-SRTM was verified by comparing its scalar model outputs from Henyey-Greenstein (HG) phase function with the Kattawar-Adams model results, and the mean relative differences were less than 2.

View Article and Find Full Text PDF

The reflectance difference (ΔR) between a floating matter pixel and a nearby water reference pixel is a method of atmospheric radiation unmixing. This technique unveils target signals by referencing the background within the horizontal neighborhood. ΔR is effective for removing the mixed-pixel effect and partial atmospheric path radiance.

View Article and Find Full Text PDF

The absolute radiometric accuracy of earth-observing camera is crucial for the applications of natural resources, environment, agriculture and other industries. To continue the progress in this filed, a lunar surface reflectance based radiometric calibration approach is given in this paper. We chose IIM, M3, SP lunar models as references and GF-4 VNIR camera as sensor under calibrating.

View Article and Find Full Text PDF

Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV.

View Article and Find Full Text PDF

This study described the on-orbit vicarious radiometric calibration of Chinese civilian high-resolution stereo mapping satellite ZY3-02 multispectral imager (MUX). The calibration was based on gray-scale permanent artificial targets, and multiple radiometric calibration tarpaulins (tarps) using a reflectance-based approach between July and September 2016 at Baotou calibration site in China was described. The calibration results reveal a good linear relationship between DN and TOA radiances of ZY3-02 MUX.

View Article and Find Full Text PDF