98%
921
2 minutes
20
High levels of the amyloid-beta (Aβ) peptide have been shown to disrupt neuronal function and induce hyperexcitability, but it is unclear what effects Aβ-associated hyperexcitability may have on tauopathy pathogenesis or propagation in vivo. Using a novel transgenic mouse line to model the impact of human APP (hAPP)/Aβ accumulation on tauopathy in the entorhinal cortex-hippocampal (EC-HIPP) network, we demonstrate that hAPP overexpression aggravates EC-Tau aggregation and accelerates pathological tau spread into the hippocampus. In vivo recordings revealed a strong role for hAPP/Aβ, but not tau, in the emergence of EC neuronal hyperactivity and impaired theta rhythmicity. Chronic chemogenetic attenuation of EC neuronal hyperactivity led to reduced hAPP/Aβ accumulation and reduced pathological tau spread into downstream hippocampus. These data strongly support the hypothesis that in Alzheimer's disease (AD), Aβ-associated hyperactivity accelerates the progression of pathological tau along vulnerable neuronal circuits, and demonstrates the utility of chronic, neuromodulatory approaches in ameliorating AD pathology in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467290 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3000851 | DOI Listing |
Methods Cell Biol
September 2025
Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. Electronic address:
Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.
View Article and Find Full Text PDFRedox Biol
September 2025
Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany. Electronic address:
Anti-IgLON5 disease is an autoimmune encephalitis with more chronic presentation including memory decline, sleep disorder, bulbar symptoms and movement disorder. Post-mortem brains of patients with anti-IgLON5 disease show neurodegeneration with tau deposition sparking interest in this 'acquired tauopathy' as a disease model for neurodegeneration, yet mechanisms of neurodegeneration remain unknown. Using a reductionist human iPSC-derived neuron-antibody model, we applied proteomics approach, electrophysiology and live cell imaging.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2025
Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Roma, Italy.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.
Background: As a common postoperative neurological complication, postoperative delirium (POD) can lead to poor postoperative recovery in patients, prolonged hospitalization, and even increased mortality. However, POD's mechanism remains undefined and there are no reliable molecular markers of POD to date. The present work examined the associations of cerebrospinal fluid (CSF) sTREM2 with CSF POD biomarkers, and investigated whether the effects of CSF sTREM2 on POD were modulated by the core pathological indexes of POD (Aβ42, tau, and ptau).
View Article and Find Full Text PDFAnn Neurol
September 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Objective: The objective of this study was to determine the predictive value of amyloid-positron emission tomography (PET) versus the plasma ratio of phosphorylated tau at threonine 217 (p-tau217) to non-phosphorylated tau217 (%p-tau217) for tau-PET transitions (T- to T+). The added value of combining plasma amyloid-β 42 and amyloid-β 40 (Aβ42/40) and %p-tau217 into an amyloid probability score (APS2) was also assessed.
Methods: Mayo Clinic Study of Aging (MCSA) participants had plasma markers measured at via mass spectrometry (MS), an amyloid-PET scan, and a tau-PET (meta-temporal region of interest [ROI]) negative scan (standardized uptake value ratio [SUVR] <1.