Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: (E)-4,8-dimethylnona-1,3,7-triene (DMNT), one of the homoterpenes, is thought to contribute to plant indirect defense against insect herbivores. DMNT-enriched plants have great application potential to regulate insect behavior in the 'push & pull' strategy of pest management. However, de novo biosynthesis of DMNT in plants without a homoterpene metabolic pathway in their wild type is still not achieved, and the role of DMNT played in these plants and their interacted insects remains unclear.

Results: Cytochrome P450s and terpene synthases involved in homoterpenes biosynthesis in cotton plants were employed to generate DMNT-releasing tobacco plants. Single GhTPS14 transgenic Nicotiana tabacum only emitted (E)-nerolidol, the precursor of DMNT. Transgenic tobaccos expressing single GhCYP82Ls were unable to produce DMNT or TMTT, while DMNT was detected when exogenous (E)-nerolidol was added. Compared to wild-type plants, only co-expression of GhCYP82Ls and GhTPS14 in transgenic tobaccos triggered the constitutive release of single-component DMNT. Furthermore, DMNT-emitting transgenic tobacco plants, whether infested with Helicoverpa armigera larvae or not, significantly incited orientation behavior of parasitoid wasps Microplitis mediator.

Conclusion: Wild type N. tabacum plants have no DMNT metabolic pathway. DMNT could be de novo biosynthesized via co-expression of GhCYP82Ls and GhTPS14. What is more, the parasitoid wasp M. mediator could be recruited by DMNT-releasing transgenic tobaccos, especially by H. armigera-infested transgenic tobaccos, suggesting the potential roles of engineered N. tabacum in regulating the behavioral preference of M. mediator.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6047DOI Listing

Publication Analysis

Top Keywords

transgenic tobaccos
16
dmnt
10
nicotiana tabacum
8
novo biosynthesis
8
biosynthesis dmnt
8
orientation behavior
8
behavior parasitoid
8
parasitoid wasps
8
wasps microplitis
8
plants
8

Similar Publications

Engineering resistance genes against tomato brown rugose fruit virus.

Sci China Life Sci

September 2025

MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.

View Article and Find Full Text PDF

Uncovering a novel role of nAChRs in oxidative stress-mediated vascular dysfunction in COPD.

Redox Biol

August 2025

Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. Electronic

Tobacco smoke is the main risk factor for the development of chronic obstructive pulmonary disease (COPD). Despite current therapies alleviate symptoms there are limitations in the efficacy of treatments to curb its cardiovascular morbidities, particularly vascular dysfunction and the development of pulmonary hypertension. Our previous studies demonstrate that cigarette smoke directly contributes to pulmonary arterial dysfunction.

View Article and Find Full Text PDF

CsWRKY15 from tea plant promotes its auto-resistance when intercropped with chestnut.

Plant Cell Physiol

September 2025

Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.

To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).

View Article and Find Full Text PDF

Molecular mechanisms of lignin biosynthesis in Chimonanthus praecox: Morphological, physiological, transcriptomic, and functional gene analysis.

Plant Physiol Biochem

August 2025

Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China. Electronic address:

Chimonanthus praecox, an economically important tree species that is native to China, is widely cultivated as a woody cut flower and is highly demanded by consumers worldwide. The development and utilization of lignin can further enhance its economic value. However, there is currently no research on lignin biosynthesis in C.

View Article and Find Full Text PDF

Marine microalgae are the primary producers of important lipids in oceanic ecosystems. In particular, they sustain the food web with omega-3 very-long-chain polyunsaturated fatty acids (n-3 PUFAs), which play a protective role against various human metabolic disorders and are thus considered highly beneficial to health. Ostreococcus tauri is a marine pico-eukaryote that contains high levels of several n-3 PUFAs, including docosahexaenoic acid (22:6n3; DHA), octadecapentaenoic acid (18:5n3, OPA), and hexadecatetraenoic acid (16:4n3), each with a distinct distribution.

View Article and Find Full Text PDF