Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This phantom study aimed to determine the optimal acquisition window size for phase-based respiratory gating in silicon photomultiplier (SiPM)-based fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and its acquisition time in respiratory-gated imaging with the optimal window size.

Methods: Images of a moving NEMA IEC Body Phantom Set with hot spheres were acquired. First, the tumor volume and the maximum standardized uptake value (SUV) of images reconstructed using a different window size were evaluated to define the optimal window size. Second, the quality of the images reconstructed using the optimal window size and different acquisition times was evaluated using the detectability score of the 10-mm hot sphere and physical indices.

Results: The volume and the SUV of the 10-mm hot sphere were improved when the window size was narrow, and there were no significant differences among images reconstructed using a window size narrower than 20%. To reconstruct an image using the 20% window size, an acquisition time of 5 min was required to visualize the 10-mm hot sphere.

Conclusions: The optimal window size for phase-based respiratory gating is 20%. Further, an acquisition time of 5 min should be taken for respiratory-gated imaging with the 20% window size on SiPM-based FDG-PET/CT.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.2020_JSRT_76.8.795DOI Listing

Publication Analysis

Top Keywords

window size
40
optimal window
20
acquisition time
16
size acquisition
12
images reconstructed
12
10-mm hot
12
window
11
size
10
time respiratory-gated
8
phantom study
8

Similar Publications

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF

Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.

View Article and Find Full Text PDF

Vaccine safety surveillance systems are vital for the post-market safety monitoring of novel and well-established vaccines, given the sample size, representativeness and follow-up time in clinical trials. The introduction of COVID-19 vaccines during the SARS-CoV-2 pandemic presented unprecedented challenges for safety surveillance. Here, we discuss methodologic considerations for epidemiologic study design and real world data for passive and active surveillance systems for COVID-19 vaccines in the United States (U.

View Article and Find Full Text PDF

Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained.

View Article and Find Full Text PDF

Foraminifera as indicators of species invasion: in Long Island Sound.

Sci Adv

September 2025

Department of Earth and Planetary Sciences, Yale University, 210 Whitney Ave., New Haven, CT 06511, USA.

Resolving timing of the invasion of nonindigenous species is difficult in estuarine settings, due to their pervasive history of anthropogenic disturbance. Many non-native marine taxa are not documented until after they have become invasive, leaving questions about invasion timing (first introduction and lag period), geographic origin, vectors and pathways, and cause(s) of success. Foraminifera, unicellular, calcareous-shelled eukaryotes, offer a unique way of analyzing past ecosystem structure because their fossilized shells provide a window into the past, and small size and abundance enable us to document distribution over time in core samples.

View Article and Find Full Text PDF