Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Gaining control over the delivery of therapeutics to a specific disease site is still very challenging. However, especially when cytotoxic drugs such as chemotherapeutics are used, the importance of a control mechanism that can differentiate "sick" target cells from the surrounding healthy tissue is pivotal. Here, we designed a nanoparticle-based drug delivery process, which releases an active agent only in the presence of a specific trigger DNA sequence. With this strategy, we are able to initiate the release of therapeutics into the cytosol with high efficiency. Furthermore, we demonstrate how an endogenous marker (, a specific miRNA sequence) that is overexpressed in the initial phases of certain cancer types can be used as a stimulus to autonomously initiate intracellular drug release-and only in cells where this pathophysiological marker is present. We expect that this precisely controlled delivery mechanism can facilitate the design of site-specific treatments for such diseases, where an overexpression of signature oligonucleotide sequences has been identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c04035 | DOI Listing |