98%
921
2 minutes
20
Significant attempts are being made worldwide in an attempt to develop a tool that, with a simple analysis, is capable of distinguishing between different arboviruses. Herein, we employ molecular fluorescence spectroscopy as a sensitive and specific rapid tool, with simple methodology response, capable of identifying spectral variations between serum samples with or without the dengue or chikungunya viruses. Towards this, excitation emission matrices (EEM) of clinical samples from patients with dengue or chikungunya, in addition to uninfected controls, were separated into a training or test set and analysed using multi-way classification models such as n-PLSDA, PARAFAC-LDA and PARAFAC-QDA. Results were evaluated based on calculations of accuracy, sensitivity, specificity and F score; the most efficient model was identified to be PARAFAC-QDA, whereby 100% was obtained for all figures of merit. QDA was able to predict all samples in the test set based on the scores present in the factors selected by PARAFAC. The loadings obtained by PARAFAC can be used in future studies to prove the direct or indirect relationship of spectral changes caused by the presence of these viruses. This study demonstrates that molecular fluorescence spectroscopy has a greater capacity to detect spectral variations related to the presence of such viruses when compared to more conventional techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426909 | PMC |
http://dx.doi.org/10.1038/s41598-020-70811-7 | DOI Listing |
Chem Sci
September 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Abnormal glycosylation is widespread in cancer, and the overexpression of glycoantigens is a manifestation of glycosylation abnormalities. Tn antigen, sTn antigen, and T antigen are known as tumor-associated glycoantigens, and their expression varies in different tumors or subtypes of the same tumor. Therefore, simultaneous detection of these three glycoantigens is of great significance for the diagnosis of tumors.
View Article and Find Full Text PDFAnalyst
September 2025
School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India.
An imino-linked dansyl-carbazole molecular system, DASH, is designed and synthesized. This system (DASH) is rationalized in such a way that it works as a suitable template for the detection of date rape drugs, gamma-butyrolactone (GBL) and gamma-valerolactone (GVL), in addition to latent fingerprint detection. Both rape drug and latent fingerprint detection are important aspects of drug abuse-related crimes in forensic analysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Department of Chemistry and Chemical Engineering, ShaanXi Normal University, Xi'an, 710062, P.R. China.
Rhodamine derivatives exhibiting inverted open-closed form fluorescence behavior redefines conventional photochemical paradigms while illuminating new structure-property relationships and fascinating application potentials. Herein, we report a donor-acceptor engineering strategy that activates closed form emission in rhodamines, achieving unprecedented Stokes shifts (>280 nm) while overcoming aggregation-caused quenching. The new class of rhodamines with inverted open-close form emission behavior are created through simultaneous substitution of N,N-diethyl groups with indole (donor) and conversion of spiro-lactam to benzene sulfonamide (acceptor).
View Article and Find Full Text PDF