Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447016PMC
http://dx.doi.org/10.1371/journal.ppat.1008761DOI Listing

Publication Analysis

Top Keywords

two-component system
12
intracellular survival
12
pneumococcal two-component
8
system sirrh
8
streptococcus pneumoniae
8
influenza virus
8
survival
6
pneumoniae
5
sirrh linked
4
linked enhanced
4

Similar Publications

Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.

View Article and Find Full Text PDF

Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.

View Article and Find Full Text PDF

Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.

View Article and Find Full Text PDF

Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.

View Article and Find Full Text PDF

Unlabelled: Group B Streptococcus (GBS), a common colonizer of the human genital and gastrointestinal tracts, is a leading cause of neonatal bacterial meningitis, which can lead to severe neurological complications. The hypervirulent serotype III, sequence type 17 (ST-17) strain COH1 is strongly associated with late-onset disease due to its unique set of virulence factors. However, genetic manipulation of ST-17 strains is notoriously challenging, limiting the ability to study key pathogenic genes.

View Article and Find Full Text PDF