98%
921
2 minutes
20
Most of the genomic studies in plants and animals have used additive models for studying genetic parameters and prediction accuracies. In this study, we used genomic models with additive and nonadditive effects to analyze the genetic architecture of growth and wood traits in an open-pollinated (OP) population of We used two progeny trials consisting of 5742 trees from 244 OP families to estimate genetic parameters and to test genomic prediction accuracies of three growth traits (diameter at breast height - DBH, total height - Ht and tree volume - Vol) and kraft pulp yield (KPY). From 5742 trees, 468 trees from 28 families were genotyped with 2023 pre-selected markers from candidate genes. We used the pedigree-based additive best linear unbiased prediction (ABLUP) model and two marker-based models (single-step genomic BLUP - ssGBLUP and genomic BLUP - GBLUP) to estimate the genetic parameters and compare the prediction accuracies. Analyses with the two genomic models revealed large dominant effects influencing the growth traits but not KPY. Theoretical breeding value accuracies were higher with the dominance effect in ssGBLUP model for the three growth traits. Accuracies of cross-validation with random folding in the genotyped trees have ranged from 0.60 to 0.82 in different models. Accuracies of ABLUP were lower than the genomic models. Accuracies ranging from 0.50 to 0.76 were observed for within family cross-validation predictions with low relationships between training and validation populations indicating part of the functional variation is captured by the markers through short-range linkage disequilibrium (LD). Within-family phenotype predictive abilities and prediction accuracies of genetic values with dominance effects are higher than the additive models for growth traits indicating the importance of dominance effects in predicting phenotypes and genetic values. This study demonstrates the importance of genomic approaches in OP families to study nonadditive effects. To capture the LD between markers and the quantitative trait loci (QTL) it may be important to use informative markers from candidate genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534421 | PMC |
http://dx.doi.org/10.1534/g3.120.401601 | DOI Listing |
Cardiol Young
September 2025
Department of Anesthesiology and Reanimation, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey.
Objectives: This study aimed to evaluate the predictive accuracy of Paediatric Risk of Mortality-III, Paediatric Index of Mortality-II, and Paediatric Logistic Organ Dysfunction scoring systems for major adverse events following congenital heart surgery.
Methods: This prospective observational study included patients under 18 years of age who were admitted to the ICU for at least 24 hours postoperatively following congenital heart surgery. Major adverse events were defined as a composite of 30-day mortality, ICU readmission, reintubation, acute neurologic events, requirement for extracorporeal membrane oxygenation, cardiac arrest requiring cardiopulmonary resuscitation, need for a permanent pacemaker, acute kidney injury, or unplanned reoperation.
J Assist Reprod Genet
September 2025
Department of Gynecology, Pingxiang Maternal and Child Health Hospital, PingXiang, Jiangxi, China.
Objective: This study aimed to identify key predictors of uterine fibroid (UF) recurrence following laparoscopic myomectomy (LM) in reproductive-age women and to construct a predictive nomogram to support individualized clinical decision-making.
Methods: This retrospective cohort study included 459 women who underwent LM. Recurrence of UFs and risk of recurrence were analyzed.
Immunol Res
September 2025
Department of Immunology and Allergy, Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye.
Background: Variants of uncertain significance (VUS) represent a major diagnostic challenge in the interpretation of genetic testing results, particularly in the context of inborn errors of immunity such as severe combined immunodeficiency (SCID). The inconsistency among computational prediction tools often necessitates expensive and time-consuming wet-lab analyses.
Objective: This study aimed to develop disease-specific, multi-class machine learning models using in silico scores to classify SCID-associated genetic variants and improve the interpretation of VUS.
Pharm Res
September 2025
Axcelead Tokyo West Partners, Inc. Translational Science, Discovery DMPK, Hino-Shi, Tokyo, 191-0065, Japan.
Purpose: Accurate prediction of human clearance (CL) is essential in early drug development. Single Species Scaling (SSS) using rat pharmacokinetic (PK) data, particularly with unbound plasma fraction (f), is widely used. However, its accuracy declines for compounds with extremely low f, and no systematic method has addressed this limitation.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.
View Article and Find Full Text PDF