Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Both deletional and nondeletional globin gene mutations are common in Southeast Asians. Normally, deletional gene mutations are characterized separately from nondeletional gene mutations. Therefore, we developed a new approach of multiplex real-time polymerase chain reaction (qPCR) followed by high-resolution melting (HRM) analysis without a fluorescently-labeled probe for the simultaneous detection of deletional and nondeletional gene mutations in a single tube. Three sets of primer pairs were used to establish the qPCR-HRM method that was used to genotype more than 20 different globin genotypes. Twenty known genotypes were used to optimize the qPCR and HRM conditions. Eight genotypes were used to determine the reproducibility of the method. A total of 351 blinded known DNA samples were used for the validation study in three separate reactions and revealed 16 distinct patterns of fragments and/or HRM. The melting temperatures (Tm) of the 3.5 kb, - -, -FR2 (exon 1 of the gene), - - (Southeast Asian), α2 and 3'-ψζ1 fragments were 79.44, 81.01, 86.47, 87.89, 90.54 and 94.15 °C, respectively. The HRM analysis was performed with the -FR2 fragment to differentiate several alleles. We report a rapid and high-throughput technique that showed 100.0% concordance and low variability for each run. Our developed technique is one of the alternative techniques recommended for screening samples with both deletional and nondeletional globin gene mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03630269.2020.1799819DOI Listing

Publication Analysis

Top Keywords

gene mutations
24
deletional nondeletional
16
nondeletional globin
12
globin gene
12
chain reaction
8
high-resolution melting
8
nondeletional gene
8
hrm analysis
8
gene
7
mutations
6

Similar Publications

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

A new Escherichia coli laboratory evolution screen for detecting plant ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mutations with enhanced CO-fixation capacity has identified substitutions that can enhance plant productivity. Selected were a large subunit catalytic (Met-116-Leu) mutation that increases the k of varying plant Rubiscos by 25% to 40% and a solubility (Ala-242-Val) mutation that improves plant Rubisco biogenesis in E. coli 2- to 10-fold.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF