Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lead (Pb) is considered an important environmental contaminant due to its considerable toxicity to living organisms. It can enter and accumulate in plant tissues and become part of the food chain. In the present study, individual and combined effects of Bacillus sp. MN-54 and phosphorus (P) on maize growth and physiology were evaluated in Pb-contaminated soil. A pristine soil was artificially contaminated with two levels of Pb (i.e., 250 and 500 mg kg dry soil) and was transferred to plastic pots. Bacillus sp. MN-54 treated and untreated maize (DK-6714) seeds were planted in pots. Recommended doses of nutrients (N and K) were applied in each pot while P was applied in selective pots. Results showed that Pb stress hampered the maize growth and physiological attributes in a concentration-dependent manner, and significant reductions in seedling emergence, shoot and root lengths, fresh and dry biomasses, leaf area, chlorophyll content, rate of photosynthesis, and stomatal conductance were recorded compared with control. Application of Bacillus sp. MN-54 or P particularly in combination significantly reduced the toxic effects of Pb on maize. At higher Pb level (500 mg kg), the combined application effectively reduced Pb uptake up to 42.4% and 50% by shoots, 30.8% and 33.9% by roots, and 18.4% and 26.2% in available Pb content in soil after 45 days and 90 days, respectively compared with that of control. Moreover, the use of Bacillus sp. MN-54 significantly improved the P uptake by maize plants by 44.4% as compared with that of control. Our findings suggest that the combined use of Bacillus sp. MN-54 and P could be effective and helpful in improving plant growth and Pb immobilization in Pb-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10372-4DOI Listing

Publication Analysis

Top Keywords

bacillus mn-54
24
compared control
12
combined application
8
application bacillus
8
mn-54 phosphorus
8
uptake maize
8
maize growth
8
pb-contaminated soil
8
bacillus
6
mn-54
6

Similar Publications

Salinity exerts significant negative impacts on growth and productivity of crop plants and numerous management practices are used to improve crop performance under saline environments. Micronutrients, plant growth promoting bacteria and biochar are known to improve crop productivity under stressful environments. Maize ( L.

View Article and Find Full Text PDF

Lead (Pb) is considered an important environmental contaminant due to its considerable toxicity to living organisms. It can enter and accumulate in plant tissues and become part of the food chain. In the present study, individual and combined effects of Bacillus sp.

View Article and Find Full Text PDF