98%
921
2 minutes
20
Purpose: Acceleration of a passive tracking sequence based on phase-only cross-correlation (POCC) using radial undersampling.
Methods: The phase-only cross-correlation (POCC) algorithm allows passive tracking of interventional instruments in real-time. In a POCC sequence, two cross-sectional images of a needle guide with a positive MR contrast are continuously acquired from which the instrument trajectory is calculated. Conventional Cartesian imaging for tracking is very time consuming; here, a higher temporal resolution is achieved using a highly undersampled radial acquisition together with a modified POCC algorithm that incorporates the point-spread-function. Targeting and needle insertion is performed in two phantom experiments with 16 fiducial targets, each using 4 and 16 radial projections for passive tracking. Additionally, targeting of eight deep lying basivertebral veins in the lumbar spines is performed for in vivo proof-of-application with four radial projections for needle guide tracking.
Results: The radially undersampled POCC sequence yielded in the phantom experiments a lateral targeting accuracy of 1.1 ± 0.4 mm and 1.0 ± 0.5 mm for 16 and 4 radial projections, respectively, without any statistically significant difference. In the in vivo application, a mean targeting duration of 62 ± 13 s was measured.
Conclusion: Radial undersampling can drastically reduce the acquisition time for passive tracking in a POCC sequences for MR-guided needle interventions without compromising the targeting accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.28448 | DOI Listing |
Bioinspir Biomim
September 2025
Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.
Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.
Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Microtechnology for Neuroelectronics Unit (NetS(3) lab), Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
Achieving stable and continuous monitoring of signals of numerous single neurons in the brain faces the conflicting challenge of increasing the microelectrode count while minimizing cross-sectional shank dimensions to reduce tissue damage, foreign-body-reaction and maintain signal quality. Passive probes need to route each microelectrode individually to external electronics, thus increasing shank size and tissue-damage as the number of electrodes grows. Active complementary metal-oxide-semiconductor (CMOS) probes overcome the limitation in electrode count and density with on-probe frontend, addressing and multiplexing circuits, but current probes have relatively large shank widths of 70 - 100 μm.
View Article and Find Full Text PDFUnlabelled: Plasma membrane (PM) lipids and proteins are organized into nanoscale regions called nanodomains, which regulate essential cellular processes by controlling local membrane organization. Despite advances in super-resolution microscopy and single particle tracking, the small size and temporal instability of nanodomains make them difficult to study in living cells. To overcome these challenges, we built fluorescent DNA origami probes that insert into the PM via lipid anchors displayed on the cell.
View Article and Find Full Text PDFMol Ecol Resour
September 2025
CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France.
As human activities drive biodiversity decline, effective biomonitoring is more crucial than ever to track species distribution changes and inform conservation and restoration actions. Environmental DNA (eDNA) metabarcoding has emerged as a promising tool for the simultaneous detection of multiple taxa. However, while substrates play a crucial role in eDNA studies, limited research has compared substrate performance for terrestrial vertebrate detection, leaving a critical gap in empirical knowledge for large-scale application.
View Article and Find Full Text PDF