Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We generate and analyze chaos-modulated pulses based on a gain-switched semiconductor laser subject to delay-synchronized optical feedback for pulsed chaos lidar applications. Benefited by the aperiodic and uncorrelated chaos waveforms, chaos lidar possesses the advantages of no range ambiguity and immunity to interference and jamming. To improve the detection range while in compliance with the eye-safe regulation, generating chaos-modulated pulses with higher peak power rather than chaos in its CW form is desired. While using an acousto-optic modulator to time-gate the CW chaos into pulses could be lossy and energy inefficient, in this paper, we study the generation of chaos-modulated pulses using a gain-switched laser subject to delay-synchronized optical feedback. Under different feedback strengths and modulation currents of gain-switching, we investigate the quality of the chaos-modulated pulses generated by analyzing their ratio of chaos oscillations, peak sidelobe levels (PSLs), and cross-correlation peaks under different mismatching conditions between the pulse repetition interval (PRI) and the feedback time delay τ. With proper feedback strengths and modulation currents, we find that synchronizing the gain-switching modulation with the delayed feedback (PRI = τ) is essential in generating the chaos-modulated pulses suitable for the pulsed chaos lidar applications. When mismatching occurs, we identify sequences of dynamical periods including stable, periodic, and chaos oscillations evolved within a pulse.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.399609DOI Listing

Publication Analysis

Top Keywords

chaos-modulated pulses
24
chaos lidar
16
laser subject
12
subject delay-synchronized
12
delay-synchronized optical
12
optical feedback
12
pulsed chaos
12
lidar applications
12
chaos
9
pulses based
8

Similar Publications

This study presents the development of a 3D random-modulated pulse lidar based on a gain-switched semiconductor laser with a recirculating delay lines interferometer (RDLI). The random-modulated pulses are generated by homodyning the frequency-shifting gain-switched pulses with multiple self-delays. While they exhibit anti-interference characteristics similar to those in previously developed chaos-modulated lidar, there is no need for external pulse formation and wavelength-sensitive filtering components in the current configuration.

View Article and Find Full Text PDF

We present a real-time multi-channel pulsed chaos lidar system that integrates time-division multiplexing (TDM) and wavelength-division multiplexing (WDM) to achieve enhanced performance and efficiency. The system employs WDM with a multi-mode laser to generate multiple spectral channels, each producing uncorrelated chaos-modulated pulses. To minimize the number of required detectors and analog-to-digital converters while mitigating signal interference between channels, TDM is utilized to temporally stagger the channels, preventing overlap.

View Article and Find Full Text PDF

We propose the generation of random-modulated pulses using a gain-switched semiconductor laser with a delayed self-homodyne interferometer (DSHI) for lidar applications. By emitting non-repetitive random-modulated pulses, ambiguity in ranging and interference in detection can be mitigated. When gain-switched, the wavelength of the laser fluctuates abruptly at the beginning of the pulse and then drops until it stabilizes toward its continuous-wave (CW) state.

View Article and Find Full Text PDF

We investigated the characteristics of chaos-modulated pulses amplified by a pulsed master oscillator power amplifier (MOPA) for application in a new chaos lidar system in this study. Compared with the loss modulation applied in a continuous-wave (CW) time-gating scheme, the pulsed MOPA scheme could generate chaos-modulated pulses with much higher peak power, resulting in an improved peak-to-standard deviation of sidelobe level (PSL) in correlation-based lidar detection. When the pulsed MOPA scheme was applied at a duty cycle of 0.

View Article and Find Full Text PDF

We generate and analyze chaos-modulated pulses based on a gain-switched semiconductor laser subject to delay-synchronized optical feedback for pulsed chaos lidar applications. Benefited by the aperiodic and uncorrelated chaos waveforms, chaos lidar possesses the advantages of no range ambiguity and immunity to interference and jamming. To improve the detection range while in compliance with the eye-safe regulation, generating chaos-modulated pulses with higher peak power rather than chaos in its CW form is desired.

View Article and Find Full Text PDF