Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The Grüneisen relaxation effect has been successfully employed to improve the photoacoustic (PA) imaging contrast. However, complex system design and cost hinder the progress from benchside to bedside, since an additional pre-heating laser source needs to be coupled into the original light path and synchronized with other equipment for conducting the nonlinear effect. To overcome the limitation, we propose a time delay heating PA imaging (TDH-PAI) method based on the time delay effect in a passively Q-switched laser. Experimentally, only one single microchip pulse laser is built and utilized for the nonlinear PA signal enhancement without additional components. The 808 nm pump pulse of the laser diode and the excited 1064 nm pulse are respectively used for pre-heating and acquiring PA signals. The heating effect is optimized by adjusting the input parameters and an enhancement of more than 30% in PA signals is achieved. TDH-PAI reduces the cost and complexity of the nonlinear PA system, which provides an efficient way for achieving a high-contrast PA imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.397727 | DOI Listing |