Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We propose a novel and unified solution for user-guided video object segmentation tasks. In this work, we consider two scenarios of user-guided segmentation: semi-supervised and interactive segmentation. Due to the nature of the problem, available cues - video frame(s) with object masks (or scribbles) - become richer with the intermediate predictions (or additional user inputs). However, the existing methods make it impossible to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learning to read relevant information from all available sources. In the semi-supervised scenario, the previous frames with object masks form an external memory, and the current frame as the query is segmented using the information in the memory. Similarly, to work with user interactions, the frames that are given user inputs form the memory that guides segmentation. Internally, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. The abundant use of the guidance information allows us to better handle challenges such as appearance changes and occlusions. We validate our method on the latest benchmark sets and achieve state-of-the-art performance along with a fast runtime.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2020.3008917DOI Listing

Publication Analysis

Top Keywords

memory networks
8
video object
8
object segmentation
8
frames object
8
object masks
8
user inputs
8
segmentation
5
memory
5
space-time memory
4
networks video
4

Similar Publications

Hubs, influencers, and communities of executive functions: a task-based fMRI graph analysis.

Front Hum Neurosci

August 2025

Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.

Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.

Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.

Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.

View Article and Find Full Text PDF

Maximizing theoretical and practical storage capacity in single-layer feedforward neural networks.

Front Comput Neurosci

August 2025

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.

Artificial neural networks are limited in the number of patterns that they can store and accurately recall, with capacity constraints arising from factors such as network size, architectural structure, pattern sparsity, and pattern dissimilarity. Exceeding these limits leads to recall errors, eventually leading to catastrophic forgetting, which is a major challenge in continual learning. In this study, we characterize the theoretical maximum memory capacity of single-layer feedforward networks as a function of these parameters.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.

Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.

View Article and Find Full Text PDF

Background: Tripterygium glycoside (TG) has been reported to have the effect of ameliorating Alzheimer's disease (AD)-like symptoms in mice model. However, the underlying mechanism is largely unknown. This study aimed to investigate the potential mechanism of TG against AD by integrating metabolomics, 16s rRNA sequencing, network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF