Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure.

J Biol Chem

East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA. Electronic address:

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply ( reductive stress), which exponentially increases the rate of HO (HO) production. HO is reduced to HO by electrons supplied by NADPH. NADP is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced HO production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through β-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through β-oxidation generates a corresponding increase in mitochondrial HO production, that the majority (∼70-80%) of HO produced is reduced to HO by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within β-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting HO production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705309PMC
http://dx.doi.org/10.1074/jbc.RA120.013899DOI Listing

Publication Analysis

Top Keywords

energy expenditure
16
redox buffering
16
buffering circuits
16
energy balance
12
energy
11
redox circuits
8
nicotinamide nucleotide
8
nucleotide transhydrogenase
8
changes energy
8
electron transport
8

Similar Publications

Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.

View Article and Find Full Text PDF

Unlabelled: Insulin resistance has been associated with acute mountain sickness (AMS) risk, but the influence of active ascent is unclear.

Methods: Thirty-two unacclimatized Soldiers (23±4yr; 80±14 kg) were tested at baseline residence (BLR), hiked ~5 km (n=16) or were driven (n=16) to 4,300 m, and stayed for 4 days (~66 h). Venous blood was taken each morning at BLR and during high altitude (HA) exposure days 2-4 (HA2-4) and the evening on day 1 at HA (HA1).

View Article and Find Full Text PDF

Amino Acid Metabolism in Cancer Cachexia and Chemotherapy Myotoxicity.

Am J Physiol Cell Physiol

September 2025

Division of Medical Sciences, NOSM University, Ontario, Canada.

Cancer induced skeletal muscle wasting (cachexia) is responsible for over 20% of cancer related deaths, yet much about the pathophysiology of the condition remains unknown. Importantly, cancer cachexia does not seem wholly responsive to traditional anabolic stimuli such as nutritional interventions. It is possible that tumours directly or indirectly target skeletal muscle for their dynamic and abundant pool of amino acids that can be reliably used by tumours to supplement energy production and biomass synthesis.

View Article and Find Full Text PDF

Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF