RiboMiner: a toolset for mining multi-dimensional features of the translatome with ribosome profiling data.

BMC Bioinformatics

MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Medical Science Building D231, Beijing, 100084, China.

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Ribosome profiling has been widely used for studies of translation under a large variety of cellular and physiological contexts. Many of these studies have greatly benefitted from a series of data-mining tools designed for dissection of the translatome from different aspects. However, as the studies of translation advance quickly, the current toolbox still falls in short, and more specialized tools are in urgent need for deeper and more efficient mining of the important and new features of the translation landscapes.

Results: Here, we present RiboMiner, a bioinformatics toolset for mining of multi-dimensional features of the translatome with ribosome profiling data. RiboMiner performs extensive quality assessment of the data and integrates a spectrum of tools for various metagene analyses of the ribosome footprints and for detailed analyses of multiple features related to translation regulation. Visualizations of all the results are available. Many of these analyses have not been provided by previous methods. RiboMiner is highly flexible, as the pipeline could be easily adapted and customized for different scopes and targets of the studies.

Conclusions: Applications of RiboMiner on two published datasets did not only reproduced the main results reported before, but also generated novel insights into the translation regulation processes. Therefore, being complementary to the current tools, RiboMiner could be a valuable resource for dissections of the translation landscapes and the translation regulations by mining the ribosome profiling data more comprehensively and with higher resolution. RiboMiner is freely available at https://github.com/xryanglab/RiboMiner and https://pypi.org/project/RiboMiner .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430821PMC
http://dx.doi.org/10.1186/s12859-020-03670-8DOI Listing

Publication Analysis

Top Keywords

ribosome profiling
16
profiling data
12
toolset mining
8
mining multi-dimensional
8
multi-dimensional features
8
features translatome
8
translatome ribosome
8
studies translation
8
features translation
8
translation regulation
8

Similar Publications

Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.

View Article and Find Full Text PDF

Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.

View Article and Find Full Text PDF

A novel protein encoded by hsa_circ_0068626 contributes to age-related cataract via the p62/Keap1/Nrf2 signaling pathway-mediated ferroptosis.

Exp Eye Res

September 2025

Department of Ophthalmology, The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu, China; Department of Ophthalmology, Southeast University Affiliated Nantong First People's Hospital, Nantong, Jiangsu, China. Electronic address: wangboai2

This study investigates whether circular RNAs (circRNAs) modulate ferroptosis in lens epithelial cells (LECs) during age-related cataract (ARC) pathogenesis via novel encoded proteins. Initial circRNA-sequencing identified hsa_circ_0068626 (circTFRC) as significantly upregulated in ARC, predominantly localized to the cytoplasm through nuclear-cytoplasmic fractionation and fluorescence in situ hybridization (FISH). Functional assays revealed that circTFRC depletion impaired LECs proliferation and viability, while overexpression exacerbated ferroptosis, evidenced by elevated intracellular reactive oxygen species (ROS) and Fe level via fluorescence probes and flow cytometry.

View Article and Find Full Text PDF

Translation of the chloroplast psbA mRNA in angiosperms is activated by photodamage of its gene product, the D1 subunit of photosystem II (PSII), providing nascent D1 for PSII repair. The involvement of chlorophyll in the regulatory mechanism has been suggested due to the regulatory roles of proteins proposed to mediate chlorophyll/D1 transactions and the fact that chlorophyll is synthesized only in the light in angiosperms. We used ribosome profiling and RNA-seq to address whether the effects of light on chloroplast translation are conserved in the liverwort Marchantia (Marchantia polymorpha), which synthesizes chlorophyll in both the dark and the light.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by an early loss of memory formation which requires protein synthesis. Tau is an intrinsically disordered protein and is subject to extensive post-translational modifications (PTMs). Some PTMs have been shown to alter localization of tau and allow tau to disrupt protein translation.

View Article and Find Full Text PDF