98%
921
2 minutes
20
For mixture separations, metal-organic frameworks (MOFs) are of practical interest. Such separations are carried out in fixed bed adsorption devices that are commonly operated in a transient mode, utilizing the pressure swing adsorption (PSA) technology, consisting of adsorption and desorption cycles. The primary objective of this article is to provide an assessment of the variety of metrics that are appropriate for screening and ranking MOFs for use in fixed bed adsorbers. By detailed analysis of several mixture separations of industrial significance, it is demonstrated that besides the adsorption selectivity, the performance of a specific MOF in PSA separation technologies is also dictated by a number of factors that include uptake capacities, intracrystalline diffusion influences, and regenerability. Low uptake capacities often reduce the efficacy of separations of MOFs with high selectivities. A combined selectivity-capacity metric, Δ, termed as the separation potential and calculable from ideal adsorbed solution theory, quantifies the maximum productivity of a component that can be recovered in either the adsorption or desorption cycle of transient fixed bed operations. As a result of intracrystalline diffusion limitations, the transient breakthroughs have distended characteristics, leading to diminished productivities in a number of cases. This article also highlights the possibility of harnessing intracrystalline diffusion limitations to reverse the adsorption selectivity; this strategy is useful for selective capture of nitrogen from natural gas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379136 | PMC |
http://dx.doi.org/10.1021/acsomega.0c02218 | DOI Listing |
Environ Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFChemMedChem
September 2025
Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, Caracas, 1041-A, Venezuela.
Due to the advantages of drug repurposing, the discovery of new chemotherapeutic agents for the treatment of Chagas disease based on approved drugs has become a strategy for identifying new candidates. In this work, the antidepressant drug sertraline is reported, with an IC of 7.8 ± 1.
View Article and Find Full Text PDFTop Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFNat Commun
September 2025
Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.
View Article and Find Full Text PDF