Metrics for Evaluation and Screening of Metal-Organic Frameworks for Applications in Mixture Separations.

ACS Omega

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

Published: July 2020


Article Synopsis

  • Metal-organic frameworks (MOFs) are critical for mixture separations in fixed bed adsorption devices using pressure swing adsorption (PSA) technology, which cycles through adsorption and desorption phases.
  • The effectiveness of MOFs is influenced by several factors including adsorption selectivity, uptake capacities, diffusion characteristics, and the ability to regenerate after use.
  • A new metric, Δ, known as separation potential, helps evaluate MOF performance by measuring the maximum productivity achieved in the adsorption or desorption cycles, and it explores the potential to manipulate diffusion limitations for enhanced selectivity, such as capturing nitrogen from natural gas.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For mixture separations, metal-organic frameworks (MOFs) are of practical interest. Such separations are carried out in fixed bed adsorption devices that are commonly operated in a transient mode, utilizing the pressure swing adsorption (PSA) technology, consisting of adsorption and desorption cycles. The primary objective of this article is to provide an assessment of the variety of metrics that are appropriate for screening and ranking MOFs for use in fixed bed adsorbers. By detailed analysis of several mixture separations of industrial significance, it is demonstrated that besides the adsorption selectivity, the performance of a specific MOF in PSA separation technologies is also dictated by a number of factors that include uptake capacities, intracrystalline diffusion influences, and regenerability. Low uptake capacities often reduce the efficacy of separations of MOFs with high selectivities. A combined selectivity-capacity metric, Δ, termed as the separation potential and calculable from ideal adsorbed solution theory, quantifies the maximum productivity of a component that can be recovered in either the adsorption or desorption cycle of transient fixed bed operations. As a result of intracrystalline diffusion limitations, the transient breakthroughs have distended characteristics, leading to diminished productivities in a number of cases. This article also highlights the possibility of harnessing intracrystalline diffusion limitations to reverse the adsorption selectivity; this strategy is useful for selective capture of nitrogen from natural gas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379136PMC
http://dx.doi.org/10.1021/acsomega.0c02218DOI Listing

Publication Analysis

Top Keywords

mixture separations
12
fixed bed
12
intracrystalline diffusion
12
metal-organic frameworks
8
adsorption desorption
8
adsorption selectivity
8
uptake capacities
8
diffusion limitations
8
adsorption
6
separations
5

Similar Publications

Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.

View Article and Find Full Text PDF

Sertraline as a Scaffold for Antitrypanosoma Cruzi Drug Development: Design of Novel Derivatives and Computational Target Screening.

ChemMedChem

September 2025

Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, Caracas, 1041-A, Venezuela.

Due to the advantages of drug repurposing, the discovery of new chemotherapeutic agents for the treatment of Chagas disease based on approved drugs has become a strategy for identifying new candidates. In this work, the antidepressant drug sertraline is reported, with an IC of 7.8 ± 1.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

On-liquid surface synthesis of diyne-linked two-dimensional polymer crystals.

Nat Commun

September 2025

Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.

The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.

View Article and Find Full Text PDF

Distribution and Relative Size of Protein Binding Domains Cooperatively Influence Phase Separation of Protein-RNA Mixtures.

J Phys Chem B

September 2025

Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.

View Article and Find Full Text PDF