Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 10, 10, and 10 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (10 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472337PMC
http://dx.doi.org/10.3390/v12080795DOI Listing

Publication Analysis

Top Keywords

vaccinia virus
8
virulence immunogenicity
8
clonal variant
8
livp-14
8
comparative analysis
8
administered livp-14
8
livp-14 strain
8
level antibodies
8
virus
6
mice
6

Similar Publications

Purpose: This narrative review aims to provide an overview of current knowledge on mpox, emphasizing updated epidemiology and recent advances in treatment and prevention strategies, in light of the latest outbreaks.

Methods: We searched PubMed and Google Scholar for publications on 'Mpox' and 'Monkeypox' up to June 5, 2025. Grey literature from governmental and health agencies was also accessed for outbreak reports and guidelines where published evidence was unavailable.

View Article and Find Full Text PDF

The global outbreak of the mpox in humans, caused by the mpox virus (MPXV), underscores the urgent need for safe and effective therapeutics. In this study, we characterized the dominant MPXV immunogens, M1R and B6R, by sequencing monoclonal antibodies (MAbs) from the immunized mice and analyzing their epitopes and functions through in vitro and in vivo assessments of binding and antiviral activities. Several broadly effective anti-M1R and anti-B6R neutralizing MAbs were identified and they exhibited enhanced antiviral effects against MPXV or vaccinia virus (VACV) when used in antibody cocktail and bispecific antibody designs.

View Article and Find Full Text PDF

Atypical cellular gill disease (ACGD) in ayu (Plecoglossus altivelis) caused by P. altivelis poxvirus (PaPV) infection has led to significant economic losses in Japanese aquaculture. The propagation of PaPV has not yet been successfully achieved in cultured cells.

View Article and Find Full Text PDF

Remarkable photodynamic activity of tetra-cationic porphyrins against Vaccinia virus and Monkeypox virus.

Antiviral Res

September 2025

Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Brazil; Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Brazil. Electronic address: eduardofurtadof

In this context, we evaluated the photodynamic effects of four cationic tetra-(pyridyl)porphyrins against Vaccinia virus Western Reserve (VACV WR) and Monkeypox virus (MPXV). The porphyrins were initially analyzed for cytotoxicity to Vero cells by MTT assay and the maximal non-cytotoxic concentrations were used in virucidal assays. For virucidal assays, VACV-WR (107.

View Article and Find Full Text PDF

Background: Limited mpox vaccination coverage, declining cross-protection from historical smallpox vaccination campaigns, and persistent zoonotic reservoirs leave many sub-Saharan countries susceptible to mpox outbreaks. With millions of vaccine doses made available to the region since late 2024 and the absence of country-specific guidelines for allocation, estimating the country-specific impact of one-time mass vaccination strategies is necessary for ongoing outbreaks and other countries at future risk.

Methods And Findings: We adapted a next generation matrix model to project disease transmission potential for 47 sub-Saharan countries from 2025 to 2050 under four transmission scenarios with different contributions of community versus sexual contacts.

View Article and Find Full Text PDF