Distinct Spatiotemporally Dynamic Wnt-Secreting Niches Regulate Proximal Airway Regeneration and Aging.

Cell Stem Cell

UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Ca

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Our understanding of dynamic interactions between airway basal stem cells (ABSCs) and their signaling niches in homeostasis, injury, and aging remains elusive. Using transgenic mice and pharmacologic studies, we found that Wnt/β-catenin within ABSCs was essential for proliferation post-injury in vivo. ABSC-derived Wnt ligand production was dispensable for epithelial proliferation. Instead, the PDGFRα lineage in the intercartilaginous zone (ICZ) niche transiently secreted Wnt ligand necessary for ABSC proliferation. Strikingly, ABSC-derived Wnt ligand later drove early progenitor differentiation to ciliated cells. We discovered additional changes in aging, as glandular-like epithelial invaginations (GLEIs) derived from ABSCs emerged exclusively in the ICZ of aged mice and contributed to airway homeostasis and repair. Further, ABSC Wnt ligand secretion was necessary for GLEI formation, and constitutive activation of β-catenin in young mice induced their formation in vivo. Collectively, these data underscore multiple spatiotemporally dynamic Wnt-secreting niches that regulate functionally distinct phases of airway regeneration and aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484054PMC
http://dx.doi.org/10.1016/j.stem.2020.06.019DOI Listing

Publication Analysis

Top Keywords

wnt ligand
16
spatiotemporally dynamic
8
dynamic wnt-secreting
8
wnt-secreting niches
8
niches regulate
8
airway regeneration
8
regeneration aging
8
absc-derived wnt
8
distinct spatiotemporally
4
regulate proximal
4

Similar Publications

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Background: Musculoskeletal diseases (MSDs) are a common group of conditions involving bones, muscles, cartilage, ligaments, and nerves, which significantly impact patients' quality of life and ability to participate in society. Anthocyanins (ACNs), as phytochemicals, possess various pharmacological and biological activities, including anti-apoptotic, antioxidant, anti-inflammatory, and immunosuppressive properties. In recent years, ACNs have shown remarkable potential in improving MSDs.

View Article and Find Full Text PDF

WNT7A and WNT7B, secreted by neural cells, are essential regulators of developmental brain angiogenesis and blood-brain barrier integrity. In brain endothelial cells, WNT7 proteins activate β-catenin signaling through the ligand-specific receptor complex GPR124-RECK and classical WNT receptors of the FZD and LRP families. Previous studies suggested that WNT7 isoforms assemble a GPR124-RECK-FZD-LRP5/6 multi-receptor complex for signaling.

View Article and Find Full Text PDF

Objective: This study aimed to elucidate the functional role and molecular mechanisms of Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) in oral squamous cell carcinoma (OSCC) through integrative analysis of single-cell RNA sequencing (scRNA-seq) data.

Materials And Methods: Cellular subpopulations within OSCC were stratified using transcriptomic datasets from the GEO database. Cell-cell communication networks were reconstructed to map ligand-receptor interactions, while Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were employed to systematically investigate SPINK1-associated signaling pathways.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a malignancy marked by uncontrolled plasma cell proliferation, immune evasion, and drug resistance. Despite advances in treatment, the disease remains incurable due to relapses and drug resistance. This study aims to investigate the molecular and cellular interactions within the myeloma microenvironment using single-cell RNA sequencing (scRNA-seq), Mendelian randomization (MR), and pathway analysis to uncover therapeutic targets.

View Article and Find Full Text PDF