A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Macrophage NCOR1 Deficiency Ameliorates Myocardial Infarction and Neointimal Hyperplasia in Mice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin-1β, interleukin-6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor-κB. Furthermore, macrophage knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792266PMC
http://dx.doi.org/10.1161/JAHA.120.015862DOI Listing

Publication Analysis

Top Keywords

macrophage ncor1
20
macrophage knockout
16
ncor1 deficiency
12
neointimal hyperplasia
12
wire injury
12
macrophage
11
myocardial infarction
8
ncor1
8
ncor1 macrophages
8
mouse model
8

Similar Publications