Adaptive laboratory evolution of Vibrio cholerae to doxycycline associated with spontaneous mutation.

Int J Antimicrob Agents

Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India. Electronic address:

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cholera, caused by the Gram-negative bacterium Vibrio cholerae, remains a serious threat in underdeveloped countries. Although rehydration therapy has been the mainstay of disease management, antibiotics are also being used as an adjunct treatment, resulting in an increase in the circulation of antimicrobial-resistant V. cholerae strains. In the present study, adaptive laboratory evolution, whole-genome sequencing and molecular docking studies were performed to identify putative mutations related to doxycycline resistance in V. cholerae isolates. The V57L mutation in the RpsJ protein was identified to be important in conferring doxycycline resistance. As revealed by molecular docking studies, the mutation was identified to alter the ribosome structure near the doxycycline binding site. Doxycycline stress also induced co-resistance to colistin, a last-resort antibiotic to treat extensively drug-resistant bacteria. This study illustrates for the first time a possible mechanism of doxycycline-selected resistance in V. cholerae as well as doxycycline-selected co-resistance, warranting strict restrictions on the indiscriminate use of antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2020.106097DOI Listing

Publication Analysis

Top Keywords

adaptive laboratory
8
laboratory evolution
8
vibrio cholerae
8
molecular docking
8
docking studies
8
doxycycline resistance
8
resistance cholerae
8
cholerae
5
doxycycline
5
evolution vibrio
4

Similar Publications

Comparative mitogenomics of the eulipotyphlan species (Mammalia, Eulipotyphla) provides novel insights into the molecular evolution of hibernation.

Mitochondrial DNA A DNA Mapp Seq Anal

September 2025

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.

Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().

View Article and Find Full Text PDF

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

UV2 and LW opsin genes mediate phototactic responses in the Asian lady beetle, Harmonia axyridis.

Insect Sci

September 2025

Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Phototaxis is a critical behavior in insects and is closely linked to vision and environmental adaptation. Understanding how insects perceive light and exhibit phototactic responses is crucial for assessing the ecological impact of artificial light at night. However, the molecular and neural mechanisms that regulate phototactic responses in insects remain largely unknown.

View Article and Find Full Text PDF