98%
921
2 minutes
20
Background: Ischemic stroke is a severe neurological disorder that affected millions of people worldwide. Neuro-inflammation and apoptosis play an essential role in the pathogenesis of neuronal death during ischemic stroke. Alpha-pinene is a bicyclic terpenoid with anti-inflammatory and anti-apoptotic activities. Accordingly, the main purpose of this study was to assess the protective effect of α-pinene in ischemic stroke.
Materials And Methods: To induce ischemic stroke in male Wistar rats, the middle cerebral artery was occluded for 60 min followed by 24 h reperfusion. Alpha-pinene was injected intraperitoneally at the beginning of reperfusion. A day after reperfusion, the neurological deficits, volume of infarct area, and blood-brain barrier (BBB) permeability were evaluated. The mRNA expression of inflammatory cytokines as well as pro- and anti-apoptotic genes was assessed by using reverse transcription-polymerase chain reaction. The protein levels of inflammatory cytokines were also measured by ELISA method.
Results: The results showed that α-pinene (50 and 100 mg/kg) significantly improved sensorimotor function and decreased the volume of infarct area in the brain. The high permeability of BBB was also alleviated by α-pinene (50 and 100 mg/kg) in ischemic areas. Besides, α-pinene (100 mg/kg) attenuated neuro-inflammation through decreasing both the gene and protein expression of TNF-α and IL-1β in the hippocampus, cortex, and striatum. Besides, α-pinene (100 mg/kg) suppressed apoptosis via downregulation of the pro-apoptotic Bax mRNA expression with a concomitant upregulation of anti-apoptotic Bcl-2 gene expression.
Conclusions: Overall, it was concluded that α-pinene exerts neuroprotective effect during ischemic stroke through attenuating neuroinflammation and inhibition of apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104977 | DOI Listing |
Mol Biol Rep
September 2025
Behbahan Faculty of Medical Sciences, Behbahan, Iran.
Transl Stroke Res
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.
View Article and Find Full Text PDFQual Life Res
September 2025
Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India.
Acta Neurochir (Wien)
September 2025
Department of Neurosurgery, Medical University of Gdańsk, Gdańsk, Poland.
Purpose: Moyamoya disease (MMD) is a chronic cerebrovascular disorder characterized by progressive arterial stenosis and fragile collateral formation, elevating stroke risk. Revascularization is the standard treatment, yet up to 27% of patients experience ischemic events within a year due to bypass insufficiency. While digital subtraction angiography (DSA) remains the gold standard for assessing bypass function, it is invasive and time-consuming.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDF