Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A novel multifunctional device based on a hybrid metal-graphene Electromagnetically induced transparency (EIT) metamaterial at the terahertz band is proposed. It is composed of a parallel cut wire pair (PCWP) that serves as a dark mode resonator, a vertical cut wire pair (VCWP) that serves as a bright mode resonator and a graphene ribbon that serves as a modulator. An ultra-broadband transmission window with 1.23 THz bandwidth can be obtained. The spectral extinction ratio can be tuned from 26% to 98% by changing the Fermi level of the graphene. Compared with previous work, our work has superior performance in the adjustable bandwidth of the transmission window without changing the structure of the dark and bright mode resonators, and has a high extinction ratio and dynamic adjustability. Besides, we present the specific application of the device in filters and optical modules. Therefore, we believe that such a metamaterial structure provides a new way to actively control EIT-like, which has promising applications in broadband optical filters and photoelectric intensity modulators in terahertz communications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407151 | PMC |
http://dx.doi.org/10.3390/nano10071359 | DOI Listing |