A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis. | LitMetric

Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis.

Aquat Toxicol

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extensive studies have shown that estrogenic endocrine-disrupting chemicals (EDCs) can disrupt testis differentiation and even cause feminization in vertebrates. However, little is known about the mechanisms by which estrogenic EDCs disrupt testis differentiation. Here, we employed Xenopus laevis, a model amphibian species sensitive to estrogenic EDCs, to explore the molecular and cellular events by which 17β-estradiol (E2) disrupts testis differentiation and causes feminization. Following waterborne exposure to E2 from stage 45/46, genetically male X. laevis were confirmed to undergo testis differentiation inhibition and ovary differentiation activation at stages 52 and 53, ultimately displaying gonadal feminization at stage 66. Using a time-course RNA sequencing approach, we then identified thousands of differentially expressed transcripts (DETs) in genetically male gonad-mesonephros complexes at stages 48, 50 and 52 (the window for testis differentiation) between E2 treatment and the control. Enrichment analysis suggests alterations in cell proliferation, extracellular matrix, and cell motility following E2 exposure. Further verification by multiple methods demonstrated that E2 inhibited cell proliferation, disrupted extracellular matrix, and altered cell motility in the genetically male gonads compared with controls, implying that these events together contributed to testis differentiation disruptions and feminization in X. laevis. This study for the first time uncovered some of the early molecular and cellular events by which estrogen disrupts testicular differentiation and causes feminization in X. laevis. These new findings improve our understanding of the mechanisms by which estrogenic EDCs disrupt testicular differentiation in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2020.105557DOI Listing

Publication Analysis

Top Keywords

testis differentiation
28
differentiation feminization
16
edcs disrupt
12
estrogenic edcs
12
genetically male
12
differentiation
10
events estrogen
8
estrogen disrupts
8
disrupts testis
8
xenopus laevis
8

Similar Publications