Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO ], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO ], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO ]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15261DOI Listing

Publication Analysis

Top Keywords

climate change
28
change impacts
8
maize yields
8
sub-saharan africa
8
impact climate
8
low-input systems
8
[co temperature
8
temperature rainfall
8
models calibrated
8
measured grain
8

Similar Publications

As the global urban heat island (UHI) effect intensifies, understanding how UHI intensity responds to its influencing factors changes is critical for designing effective mitigation strategies. We focused on global megacities, shifted the UHI intensity assessment from physical indicators to human-related parameters, and then evaluated how human-centered UHI intensity responded to influencing factor change. We verified a significant discrepancy between traditional UHI intensity and human-centered UHI intensity worldwide, an average absolute difference of 1.

View Article and Find Full Text PDF

Wetlands and their aquatic arthropods are threatened by climate change (temperature, precipitation). In this review, we first synthesize the literature on environmental controls on wetland arthropods (hydroperiod, temperature, dissolved oxygen) and then assess how these controls operate across freshwater wetlands from different global biomes (tropical/subtropical, temperate, high latitude/altitude, and dry climates) and how changes in climates alter arthropod fauna with consequent modifications to wetland ecosystem functions (decomposition, food web dynamics). We also describe ways to develop bioassessment of climate change impacts on wetlands.

View Article and Find Full Text PDF

Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF