Physiological mechanisms and phytoremediation potential of the macrophyte Salvinia biloba towards a commercial formulation and an analytical standard of glyphosate.

Chemosphere

Grupo de Estudos em Recursos Vegetais, Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, CP 350, 79804-970, Dourados, MS, Brazil. Electronic address:

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glyphosate (Gly) is the most widely used herbicide in the world and has broad-spectrum and non-selective activity. Its indiscriminate use hence risks contamination of water bodies and can affect living organisms, especially sensitive or resistant non-target plants. Despite this, studies on physiological mechanisms and Gly remediation in Neotropical aquatic plants remain limited. This study aims to evaluate the physiological mechanisms of the aquatic macrophyte Salvinia biloba on exposure to different concentrations of a Gly commercial formulation (Gly-CF) and a Gly analytical standard (Gly-AS). Furthermore, using square-wave voltammetry (SWV), we determined whether the studied plant could remove Gly from water. Our data suggest that Gly-AS and Gly-CF induce similar physiological responses in S. biloba. However, Gly-CF was more phytotoxic. Depending on the concentration, the two forms of Gly affected the plants, decreasing the chlorophyll a and b contents and the photosystem II (PSII) photochemical activity. The data also revealed that Gly promoted oxidative stress and increased the shikimic acid concentration. At the same time, the plants removed Gly from water, with 100% removal for 1 mg L Gly and above 60% removal for the other concentrations studied. Therefore, our results suggest that S. biloba may be a potential phytoremediation agent for low Gly concentrations, since 1 mg L Gly was completely removed and exhibited low phytotoxicity. This study deepens our scientific understanding of the Gly impact on and the phytoremediation potential of S. biloba.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127417DOI Listing

Publication Analysis

Top Keywords

physiological mechanisms
12
gly
12
phytoremediation potential
8
macrophyte salvinia
8
salvinia biloba
8
commercial formulation
8
analytical standard
8
gly water
8
1 mg l gly
8
physiological
4

Similar Publications

The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.

View Article and Find Full Text PDF

Recent Advances in Oral Gel Drug Delivery System: A Polymeric Approach.

Drug Dev Ind Pharm

September 2025

Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.

ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF

Autonomic medicine is a rapidly evolving field focused on understanding diseases and processes that affect the autonomic nervous system (ANS). The ANS regulates essential involuntary physiologic processes such as heart rate, blood pressure, and digestion. This review introduces the key anatomical structures, physiological mechanisms, and biochemical processes underlying autonomic function.

View Article and Find Full Text PDF

In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().

View Article and Find Full Text PDF