High resolution single particle Cryo-EM refinement using JSPR.

Prog Biophys Mol Biol

Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA. Electronic address:

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

JSPR is a single particle cryo-EM image processing and 3D reconstruction software developed in the Jiang laboratory at Purdue University. It began as a few refinement scripts for symmetric and asymmetric reconstructions of icosahedral viruses, but has grown into a comprehensive suite of tools for building ab initio reconstructions, high resolution refinements of viruses, protein complexes of arbitrary symmetries including helical tubes/filaments, and image file handling utilities. In this review, we will present examples achieved using JSPR and demonstrate recently implemented features of JSPR such as multi-aberration "alignments" and automatic optimization of masking for the assessment of map resolution using "true" FSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779749PMC
http://dx.doi.org/10.1016/j.pbiomolbio.2020.05.006DOI Listing

Publication Analysis

Top Keywords

high resolution
8
single particle
8
particle cryo-em
8
resolution single
4
cryo-em refinement
4
jspr
4
refinement jspr
4
jspr jspr
4
jspr single
4
cryo-em image
4

Similar Publications

Immunoglobulin A nephropathy (IgAN), the most prevalent primary glomerulonephritis globally, is characterized by mesangial IgA deposition and heterogeneous clinical trajectories. Historically, management relied on renin-angiotensin system inhibition and empirical immunosuppression, yet high lifetime kidney failure risk persists despite optimized care. This review synthesizes advances in molecular pathogenesis, highlighting how the traditional multi-hit hypothesis-while foundational for targeted therapy development-fails to capture IgAN's recurrent, self-amplifying nature.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

Lung cancer associated with cystic airspaces (LCCA) refers to primary lung cancers presenting with cystic airspaces accompanied by solid components, representing a relatively uncommon imaging and pathological phenotype. Although high-resolution imaging techniques, such as computerized tomography, are the primary diagnostic tools, early diagnosis remains challenging due to the similarity of its symptoms to other pulmonary diseases. Treatment options include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.

View Article and Find Full Text PDF