98%
921
2 minutes
20
The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a three-dimensional cell pair on a patterned (two-dimensional) substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions and adherens junctions. These mechanosensing adhesions matured, becoming stabilized by force. We also modeled contractile stress fibers that bind the discrete adhesions. The mechanosensing fibers strengthened upon stalling. Traction exerted on the substrate was used to generate traction maps (along the cell-substrate interface). These simulated maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions' spatial distribution, contractile moment of the cell pair, intercellular force, and number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling: mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376095 | PMC |
http://dx.doi.org/10.1016/j.bpj.2020.05.036 | DOI Listing |
Nucleic Acids Res
September 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India.
Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni
B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.
View Article and Find Full Text PDFSenescent cell accumulation has been implicated in aging and fibrotic disease, which are both characterized by increased tissue stiffness. However, the direct connection between tissue mechanics and senescence induction remains disputed in the literature. Thus, this work investigates the influence of hydrogel stiffness and viscoelasticity in promoting fibroblast senescence both in combination with genotoxic stress and independently.
View Article and Find Full Text PDFJ Biomater Appl
September 2025
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.
View Article and Find Full Text PDFAdv Funct Mater
June 2025
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
The initiation of endometriotic lesions is not well understood or characterized because endometriosis is typically diagnosed at an advanced stage. Endometriotic lesions are most often found on pelvic tissues and organs, especially the ovaries. To investigate the role of tissue tropism on ovarian endometrioma initiation, we adapted a well-characterized polyacrylamide microarray system to investigate the role of tissue-specific extracellular matrix and adhesion motifs on endometriotic cell attachment, morphology, and size.
View Article and Find Full Text PDF