Publications by authors named "Harikrishnan Parameswaran"

The current therapeutic approach to asthma focuses exclusively on targeting inflammation and reducing airway smooth muscle force to prevent the recurrence of symptoms. However, even when inflammation is brought under control, airways in an asthmatic can still hyperconstrict when exposed to a low dose of agonist. This suggests that there are mechanisms at play that are likely triggered by inflammation and eventually become self-sustaining so that even when airway inflammation is brought back under control, these alternative mechanisms continue to drive airway hyperreactivity in asthmatics.

View Article and Find Full Text PDF

The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing.

View Article and Find Full Text PDF

For an airway or a blood vessel to narrow, there must be a connected path that links the smooth muscle (SM) cells with each other, and transmits forces around the organ, causing it to constrict. Currently, we know very little about the mechanisms that regulate force transmission pathways in a multicellular SM ensemble. Here, we used extracellular matrix (ECM) micropatterning to study force transmission in a two-cell ensemble of SM cells.

View Article and Find Full Text PDF

Unlabelled: Vascular smooth muscle cells respond to mechanical stretch by reorganizing their cytoskeletal and contractile elements. Recently, we showed that contractile forces in rat aorta rings were maintained when the rings were exposed to 4 h of physiological variability in cycle-by-cycle strain, called variable stretch (VS), mimicking beat-to-beat blood pressure variability. Contractility, however, was reduced when the aorta was exposed to monotonous stretch (MS) with an amplitude equal to the mean peak strain of VS.

View Article and Find Full Text PDF

Background: Distributions of low-attenuation areas in two-dimensional (2-D) CT lung slices are used to quantify parenchymal destruction in patients with COPD. However, these segmental approaches are limited and may not reflect the true three-dimensional (3-D) tissue processes that drive emphysematous changes in the lung. The goal of this study was to instead evaluate distributions of 3-D low-attenuation volumes, which we hypothesized would follow a power law distribution and provide a more complete assessment of the mechanisms underlying disease progression.

View Article and Find Full Text PDF

The structure and function of the lung gradually becomes compromised during the progression of emphysema. In this chapter, we first describe how to assess and evaluate lung function using the forced oscillation technique. Next, we provide details on how to use the Flexivent system to measure respiratory mechanical parameters in mice.

View Article and Find Full Text PDF

Cells in the body are exposed to irregular mechanical stimuli. Here, we review the so-called fluctuation-driven mechanotransduction in which stresses stretching cells vary on a cycle-by-cycle basis. We argue that such mechanotransduction is an emergent network phenomenon and offer several potential mechanisms of how it regulates cell function.

View Article and Find Full Text PDF

Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD.

View Article and Find Full Text PDF

Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.

View Article and Find Full Text PDF

Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase's catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α.

View Article and Find Full Text PDF

The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy.

View Article and Find Full Text PDF

Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs.

View Article and Find Full Text PDF

Emphysema is a progressive disease characterized by deterioration of alveolar structure and decline in lung function. While morphometric and molecular biology studies have not fully uncovered the underlying mechanisms, they have produced data to advance computational modeling. In this review, we discuss examples in which modeling has led to novel insight into mechanisms related to disease progression.

View Article and Find Full Text PDF

Background: The formation of discrete elastin bands at the tips of secondary alveolar septa is important for normal alveolar development, but the mechanisms regulating the lung elastogenic program are incompletely understood. JNK suppress elastin synthesis in the aorta and is important in a host of developmental processes. We sought to determine whether JNK suppresses pulmonary fibroblast elastogenesis during lung development.

View Article and Find Full Text PDF

Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema.

View Article and Find Full Text PDF

Cellular traction forces are important quantitative measures in cell biology as they have provided much insight into cell behavior in contexts such as cellular migration, differentiation, and disease progression. However, the complex environment in vivo permits application of cell traction forces through multiple types of cell adhesion molecules. Currently available approaches to differentiate traction forces among multiple cell adhesion molecules are limited to specialized approaches to decouple cell-cell from cell-extracellular matrix (ECM) tractions.

View Article and Find Full Text PDF

Cells in the body exist in a dynamic mechanical environment where they are subject to mechanical stretch as well as changes in composition and stiffness of the underlying extracellular matrix (ECM). However, the underlying mechanisms by which cells sense and adapt to their dynamic mechanical environment, in particular to stretch, are not well understood. In this study, we hypothesized that emergent phenomena at the level of the actin network arising from active structural rearrangements driven by nonmuscle myosin II molecular motors play a major role in the cellular response to both stretch and changes in ECM stiffness.

View Article and Find Full Text PDF

Transpulmonary pressure and the mechanical stresses of breathing modulate many essential cell functions in the lung via mechanotransduction. We review how mechanical factors could influence the pathogenesis of emphysema. Although the progression of emphysema has been linked to mechanical rupture, little is known about how these stresses alter lung remodeling.

View Article and Find Full Text PDF

Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo.

View Article and Find Full Text PDF

Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline.

View Article and Find Full Text PDF

Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h.

View Article and Find Full Text PDF

We study the enzymatic degradation of an elastic fiber under tension using an anisotropic random-walk model coupled with binding-unbinding reactions that weaken the fiber. The fiber is represented by a chain of elastic springs in series along which enzyme molecules can diffuse. Numerical simulations show that the fiber stiffness decreases exponentially with two distinct regimes.

View Article and Find Full Text PDF

Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus.

View Article and Find Full Text PDF

Emphysema is a disease of the lung parenchyma with progressive alveolar tissue destruction that leads to peripheral airspace enlargement. In this review, we discuss how mechanical forces can contribute to disease progression at various length scales. Airspace enlargement requires mechanical failure of alveolar walls.

View Article and Find Full Text PDF