A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fast whole brain MR imaging of dynamic susceptibility contrast changes in the cerebrospinal fluid (cDSC MRI). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The circulation of cerebrospinal fluid (CSF) is closely associated with many aspects of brain physiology. When gadolinium(Gd)-based contrast is administered intravenously, pre- and post-contrast MR signal changes can often be observed in the CSF at certain locations within the intra-cranial space, mainly due to the lack of a blood-brain barrier in the dural blood vessels. This study aims to develop and systemically optimize MRI sequences that can detect dynamic signal changes in the CSF after Gd administration with a sub-millimeter spatial resolution, a temporal resolution of <10 s, and whole brain coverage.

Methods: Bloch simulations were performed to determine optimal imaging parameters for maximum CSF contrast before and after Gd injection. Simulations were validated with phantom scans. An optimized turbo-spin-echo (TSE) sequence was performed on healthy volunteers on 3T and 7T.

Results: Simulation results agreed well with phantom scans. In human scans, dynamic signal changes after Gd injection in the CSF were detected at several locations where cerebral lymphatic vessels were identified in previous studies. The concentration of Gd in CSF in these regions was estimated to be approximately 0.2 mmol/L.

Conclusion: Dynamic signal changes induced by the distribution of Gd in the CSF can be detected in healthy human subjects with an optimized TSE sequence. The proposed methodology does not rely on any particular theory on CSF circulation. We expect it to be useful for studies on CSF circulation and cerebral lymphatic vessels in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113983PMC
http://dx.doi.org/10.1002/mrm.28389DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
signal changes
8
fast brain
4
brain imaging
4
imaging dynamic
4
dynamic susceptibility
4
susceptibility contrast
4
contrast changes
4
changes cerebrospinal
4
fluid cdsc
4

Similar Publications