A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Invertible generalized synchronization: A putative mechanism for implicit learning in neural systems. | LitMetric

Invertible generalized synchronization: A putative mechanism for implicit learning in neural systems.

Chaos

Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regardless of the marked differences between biological and artificial neural systems, one fundamental similarity is that they are essentially dynamical systems that can learn to imitate other dynamical systems whose governing equations are unknown. The brain is able to learn the dynamic nature of the physical world via experience; analogously, artificial neural systems such as reservoir computing networks (RCNs) can learn the long-term behavior of complex dynamical systems from data. Recent work has shown that the mechanism of such learning in RCNs is invertible generalized synchronization (IGS). Yet, whether IGS is also the mechanism of learning in biological systems remains unclear. To shed light on this question, we draw inspiration from features of the human brain to propose a general and biologically feasible learning framework that utilizes IGS. To evaluate the framework's relevance, we construct several distinct neural network models as instantiations of the proposed framework. Regardless of their particularities, these neural network models can consistently learn to imitate other dynamical processes with a biologically feasible adaptation rule that modulates the strength of synapses. Further, we observe and theoretically explain the spontaneous emergence of four distinct phenomena reminiscent of cognitive functions: (i) learning multiple dynamics; (ii) switching among the imitations of multiple dynamical systems, either spontaneously or driven by external cues; (iii) filling-in missing variables from incomplete observations; and (iv) deciphering superimposed input from different dynamical systems. Collectively, our findings support the notion that biological neural networks can learn the dynamic nature of their environment through the mechanism of IGS.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0004344DOI Listing

Publication Analysis

Top Keywords

dynamical systems
20
neural systems
12
systems
9
invertible generalized
8
generalized synchronization
8
artificial neural
8
learn imitate
8
imitate dynamical
8
learn dynamic
8
dynamic nature
8

Similar Publications