A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Probing the potential of metalla-N-heterocyclic carbenes towards activation of enthalpically strong bonds. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Density functional theory calculations are employed to explore the reactivity of metalla-N-heterocyclic carbenes (MNHCs) towards activation of a variety of small molecules (H2, NH3, PH3, SiH3Ph and CH4). All the MNHCs considered are found to have a stable singlet ground state and possess suitable electronic properties for their application in small molecule activation. The calculated energy barriers of E-H (E = H, C, N, Si, P) activation for the MNHCs are found to be in agreement with those of the experimentally evaluated cyclic alkyl(amino)carbene (CAAC) and diamidocarbenes (DACs), thereby indicating the activating effect of the incorporation of an ancillary metal center within a cyclic NHC, and highlighting a new, underexplored strategy in achieving difficult bond activations with carbenes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt01363cDOI Listing

Publication Analysis

Top Keywords

metalla-n-heterocyclic carbenes
8
probing potential
4
potential metalla-n-heterocyclic
4
activation
4
carbenes activation
4
activation enthalpically
4
enthalpically strong
4
strong bonds
4
bonds density
4
density functional
4

Similar Publications