98%
921
2 minutes
20
Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the to acquire genes for the oxidation of hydrogen and formate and the reduction of arsenate, selenate, and elemental sulfur. Numerous membrane-bound multiheme -type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humic substances, and syntrophic partners. AOM by microorganisms limits the atmospheric release of the potent greenhouse gas methane and has consequent importance for the global carbon cycle and climate change modeling. While the oxidation of methane coupled to sulfate by consortia of anaerobic methanotrophic (ANME) archaea and bacteria is well documented, several other potential electron acceptors have also been reported to support AOM. In this study, we identify a number of novel respiratory strategies that appear to have been laterally acquired by members of the , as they are absent from related archaea and other ANME lineages. Expanding the known metabolic potential for members of the provides important insight into their ecology and suggests their role in linking methane oxidation to several global biogeochemical cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327174 | PMC |
http://dx.doi.org/10.1128/mBio.01325-20 | DOI Listing |
J Integr Neurosci
August 2025
Department of Neurobiology, Hebei Medical University, 050017 Shijiazhuang, Hebei, China.
Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.
View Article and Find Full Text PDFBrain
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege
Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.
View Article and Find Full Text PDFGene Expr Patterns
September 2025
Experimental Research Center, QingPu Hospital Affiliated to Fudan University, Shanghai, China.
The SH2B family, which includes SH2B1, SH2B2, and SH2B3, consists of adaptor proteins that possess conserved Src homology 2 (SH2) and pleckstrin homology (PH) domains, playing essential roles as signaling mediators. However, the gene expression patterns of this family during embryonic development are still mostly unclear. In this study, we first investigated the evolutionary conservation of SH2B across multiple species using phylogenetic analysis, which revealed high sequence homology between zebrafish Sh2b and its orthologs in other vertebrates.
View Article and Find Full Text PDFAnal Biochem
September 2025
College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study aimed to investigate potential biomarkers related to Endoplasmic reticulum (ER) stress in Amyotrophic lateral sclerosis (ALS) through a comprehensive bioinformatic approach. The gene expression profiles of ALS patients and healthy controls were downloaded from the Gene Expression Omnibus (GEO) database. ER stress-related genes were collected from the MSigDB databases and document literature.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2025
Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA.
Exogenous cannabinoids have long been known to promote eating. However, the underlying mechanisms have not been completely elucidated, which is critical to understanding their utility. The orexin/hypocretin (OH) system of the lateral hypothalamus (LHA) has known anatomical, biochemical, and physiological interactions with the endocannabinoid system, and has an established role in promoting appetitive behavior; yet, it is still unknown if the OH system mediates food intake following cannabinoid administration.
View Article and Find Full Text PDF