Machine learning and artificial intelligence in haematology.

Br J Haematol

Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digitalization of the medical record and integration of genomic methods into clinical practice have resulted in an unprecedented wealth of data. Machine learning is a subdomain of artificial intelligence that attempts to computationally extract meaningful insights from complex data structures. Applications of machine learning in haematological scenarios are steadily increasing. However, basic concepts are often unfamiliar to clinicians and investigators. The purpose of this review is to provide readers with tools to interpret and critically appraise machine learning literature. We begin with the elucidation of standard terminology and then review examples in haematology. Guidelines for designing and evaluating machine-learning studies are provided. Finally, we discuss limitations of the machine-learning approach.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.16915DOI Listing

Publication Analysis

Top Keywords

machine learning
16
artificial intelligence
8
machine
4
learning artificial
4
intelligence haematology
4
haematology digitalization
4
digitalization medical
4
medical record
4
record integration
4
integration genomic
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF