98%
921
2 minutes
20
Diabetic nephropathy is a leading cause of end-stage renal disease globally. The vital role of circular RNAs (circRNAs) has been reported in diabetic nephropathy progression, but the molecular mechanism linking diabetic nephropathy to circRNAs remains elusive. In this study, we investigated the significant function of circ-AKT3/miR-296-3p/E-cadherin regulatory network on the extracellular matrix accumulation in mesangial cells in diabetic nephropathy. The expression of circ-AKT3 and fibrosis-associated proteins, including fibronectin, collagen type I and collagen type IV, was assessed via RT-PCR and Western blot analysis in diabetic nephropathy animal model and mouse mesangial SV40-MES13 cells. Luciferase reporter assays were used to investigate interactions among E-cadherin, circ-AKT3 and miR-296-3p in mouse mesangial SV40-MES13 cells. Cell apoptosis was evaluated via flow cytometry. The level of circ-AKT3 was significantly lower in diabetic nephropathy mice model group and mouse mesangial SV40-MES13 cells treated with high-concentration (25 mmol/L) glucose. In addition, circ-AKT3 overexpression inhibited the level of fibrosis-associated protein, such as fibronectin, collagen type I and collagen type IV. Circ-AKT3 overexpression also inhibited the apoptosis of mouse mesangial SV40-MES13 cells treated with high glucose. Luciferase reporter assay and bioinformatics tools identified that circ-AKT3 could act as a sponge of miR-296-3p and E-cadherin was the miR-296-3p direct target. Moreover, circ-AKT3/miR-296-3p/E-cadherin modulated the extracellular matrix of mouse mesangial cells in high-concentration (25 mmol/L) glucose, inhibiting the synthesis of related extracellular matrix protein. In conclusion, circ-AKT3 inhibited the extracellular matrix accumulation in diabetic nephropathy mesangial cells through modulating miR-296-3p/E-cadherin signals, which might offer novel potential opportunities for clinical diagnosis targets and therapeutic biomarkers for diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412430 | PMC |
http://dx.doi.org/10.1111/jcmm.15513 | DOI Listing |
Clin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDFFront Pharmacol
August 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.
Diabetes mellitus is a metabolic disease with a high global prevalence, which affects blood vessels throughout the entire body. As the disease progresses, it often leads to complications, including diabetic retinopathy and nephropathy. Currently, in addition to traditional cellular and animal models, more and more organoid models have been used in the study of diabetes and have broad application prospects in the field of pharmacological research.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center of Shenyang Medical College, Shenyang, China.
MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.
View Article and Find Full Text PDFPhytochemistry
September 2025
State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Educa
Alstoniaschines A‒I (1‒9), nine previously alkaloids sharing five different skeletons were obtained from the leaves of Alstonia scholaris. The structures and absolute configurations were established by their extensive spectroscopic data analyses, including NMR, HRESIMS, X-ray crystallography data, and theoretical ECD calculations. Compounds 1, 2, 3, and 9 exerted significant protective effect against oxidative stress and inflammatory damage of podocytes induced by high glucose, manifesting as the increase of superoxide dismutase, catalase, glutathione peroxidase, alongside the reductions of malondialdehyde, nitric oxide, lactate dehydrogenase.
View Article and Find Full Text PDFClin Chim Acta
September 2025
Department of Physiology, University of Louisville, Louisville 40202 KY, USA. Electronic address:
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with podocyte injury representing an early pathogenic event. Conventional biomarkers such as albuminuria and eGFR identify renal damage only at advanced stages, limiting opportunities for timely intervention. Wilms' Tumor 1 (WT1), a podocyte-specific transcription factor, has emerged as a sensitive marker of early glomerular stress.
View Article and Find Full Text PDF