98%
921
2 minutes
20
The oral microbiome has major impacts on oral health and disease. Antimicrobial peptides (AMPs), such as nisin and cecropin, have been widely used as food preservatives or feed additives, and are thus inevitably ingested by consumers through their oral cavity. However, as broad-spectrum antimicrobial reagents, the effect of AMPs on the oral microbiome of consumer's remains poorly characterized. In this study, we performed 16S rDNA high-throughput sequencing to investigate the effect of nisin and cecropin on the oral microbiomes of rats. Our results suggest that although nisin and cecropin have different effects on the oral microbiome of rats, both AMPs impact the composition of oral microbial communities at the phylum and genus levels. Cecropin significantly reduced the diversity and richness of rat oral microbial communities. Notably, the relative abundance of the pathogen increased in the oral microbial community of rats fed cecropin-containing feed. In addition, nisin significantly reduced the amount of secretory immunoglobulin A in the saliva of rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292207 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.01082 | DOI Listing |
Pak J Pharm Sci
April 2025
Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
Antimicrobial peptides (AMPs) may mitigate the danger of increasing antimicrobial resistance. We aimed to determine the activities of catestatin, temporin A, nisin and cecropin A against Bacteroides fragilis ATCC 25285, Prevotella melaninogenica ATCC 25845, Cutibacterium acnes ATCC 6919, Peptostreptococcus anaerobius ATCC 27337 and Peptostreptococcus stomatis DSM 17678. strains.
View Article and Find Full Text PDFFront Nutr
October 2021
School of Pharmacy, Southwest Medical University, Luzhou, China.
Following a ban on antibiotic use in the feed industry, trials on the effects of various immunostimulants (prebiotics, probiotics, antimicrobial peptides [AMPs], and herbs) on the survival, growth, immunity, and disease control of farmed fish in aquaculture are being rapidly conducted. The wide variety of microbes with roles in nutrition, metabolism, and immunity in the fish intestine is the primary factor affecting the fermentability and functionality of dietary immunostimulants. For this reason, the dynamic interactions between immunostimulants and the intestinal microbiome may influence fish health.
View Article and Find Full Text PDFFront Microbiol
June 2020
School of Pharmacy, Southwest Medical University, Luzhou, China.
The oral microbiome has major impacts on oral health and disease. Antimicrobial peptides (AMPs), such as nisin and cecropin, have been widely used as food preservatives or feed additives, and are thus inevitably ingested by consumers through their oral cavity. However, as broad-spectrum antimicrobial reagents, the effect of AMPs on the oral microbiome of consumer's remains poorly characterized.
View Article and Find Full Text PDFBMC Microbiol
March 2019
Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon.
Background: Methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa are becoming difficult to treat with antibiotics whereas Cationic Antimicrobial Peptides (CAMPs) represent promising alternatives. The effects of four CAMPs (LL-37: human cathelicidin, CAMA: cecropin(1-7)-melittin A(2-9) amide, magainin-II and nisin) were investigated against clinical and laboratory S. aureus (n = 10) and P.
View Article and Find Full Text PDFPeptides
November 2013
Department of Pharmaceutical Microbiology Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkiye. Electronic address:
Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms.
View Article and Find Full Text PDF