Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multisensory interactions between pain and vision allow us to adapt our behavior to optimize detection and reaction against bodily threats. Interactions between different sensory inputs are enhanced when they are perceived closely in space and time. However, thermo-nociceptive and visual stimuli are conveyed to the cortex through specific pathways with their own conduction velocity. The present experiment aims to measure the necessary asynchrony between a nociceptive stimulus and a visual stimulus for both to be perceived as occurring simultaneously. Healthy volunteers performed a temporal order judgment task during which they discriminated the temporal order between a laser-induced nociceptive stimulus applied on one hand dorsum and a visual stimulus presented next to the stimulated hand. Laser stimulus temperature selectively activated Aδ- and/or C- fiber afferents. In order to be perceived as occurring simultaneously with a visual stimulus, a thermo-nociceptive input selectively conveyed by C-fiber afferents must precede the visual stimulus by 577 ms on average, while the stimulus-evoked input conveyed by Aδ-fiber afferents must precede it by 76 ms on average. This experiment focuses on the necessary asynchrony between thermo-nociceptive and visual inputs for them to be perceived simultaneously, to optimize the conditions under which they interact closely. Since C-fibers are unmyelinated, the asynchrony between a C-fiber stimulus and a visual stimulus is much greater than the asynchrony between a nociceptive stimulus additionally activating Aδ-fibers and that same visual stimulus. It is crucial to consider these discrepancies in further studies interested in multisensory interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.135156DOI Listing

Publication Analysis

Top Keywords

visual stimulus
24
temporal order
12
nociceptive stimulus
12
stimulus
11
visual
9
visual stimuli
8
multisensory interactions
8
thermo-nociceptive visual
8
asynchrony nociceptive
8
stimulus visual
8

Similar Publications

Neural circuits sculpt their structure and modify the strength of their connections to effectively adapt to the external stimuli throughout life. In response to practice and experience, the brain learns to distinguish previously undetectable stimulus features recurring in the external environment. The unconscious acquisition of improved perceptual abilities falls into a form of implicit learning known as perceptual learning.

View Article and Find Full Text PDF

Exercise influences visual processing and is accompanied by neural and physiological changes in the body. Yet, the underlying mechanisms by which neural and physiological responses to exercise impact ensuing perception remain poorly understood. In particular, the effects of exercise-induced cardiac changes on visual perception and electrophysiological activity are unclear.

View Article and Find Full Text PDF

Distinct Neural Mechanisms of Visual and Sound Adaptation in the Cat Visual Cortex.

Eur J Neurosci

September 2025

The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.

Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).

View Article and Find Full Text PDF

Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.

View Article and Find Full Text PDF

Individual alpha frequency tACS modifies the detection of space-time optical illusion.

Exp Brain Res

September 2025

Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.

Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.

View Article and Find Full Text PDF