98%
921
2 minutes
20
Biogeographical transition zones are important areas to investigate evolutionary ecological questions, but long-term population monitoring is needed to better understand ecological processes that govern population variations in such edge environments. The southernmost Brazilian rocky reefs are the southern limit of distribution for 96% of the tropical ichthyofauna of the western Atlantic. The Arvoredo Marine Biological Reserve is the only nearshore no-take marine-protected area (MPA) located in this transition zone. The main aim was to investigate how the populations of rocky reef fish species vary in density and biomass in space and over time, inside and outside the Arvoredo MPA. This study presents results based on a 9 year (2008-2017) underwater visual census monitoring study to evaluate the density and biomass of key fish species. Variations in density and biomass were detected for most species. Factors and mechanisms that may have influenced spatial variation are habitat structural complexity and protection from fisheries. Temporal variations, otherwise, may have been influenced by species proximity to their distributional limit, in synergy with density-dependent mechanisms and stochastic winter temperature oscillations. The MPAs harbour higher density and biomass for most species. Nonetheless, a prominent temporal decline in the recruitment of Epinephelus marginatus calls into question the continuous effectiveness of the MPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.14441 | DOI Listing |
Mar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Engineering Technology Research Center of Marine Ranching, Shanghai Ocean University, Shanghai, 201306, China; Comprehensive Workstation for Marine Ranching in the East China Sea Region, Expert Consul
Marine litter typically originates from human discards at sea or enters the ocean through land-based pathways such as surface runoff and natural disasters. The extensive accumulation of plastic litter poses severe threats to marine life. In August 2024, a specialized survey was conducted to investigate the distribution characteristics of marine litter and macrobenthic communities across four intertidal zones on Lvhua Island (XIAO'AO, DA'AO, FANGANG, and SHIZIKENG).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
IQRAA Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India.
Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Biosciences, University of Sheffield, Sheffield, United Kingdom.
Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.
View Article and Find Full Text PDFSmall Sci
September 2025
Global Innovative Centre for Advanced Nanomaterials (GICAN) College of Science, Engineering, and Environment (CESE) School of Engineering University of Newcastle Callaghan NSW 2308 Australia.
Waste biomass has aroused increasing interest in the production of low-cost materials for CO adsorption and supercapacitors. One of the primary facets in this regard is to develop nanoporous carbons with controlled porosity and high surface area. Herein, waste wood chips are used to synthesize nanoporous biocarbons via a solid-state KOH-based chemical activation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDF