Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biogeographical transition zones are important areas to investigate evolutionary ecological questions, but long-term population monitoring is needed to better understand ecological processes that govern population variations in such edge environments. The southernmost Brazilian rocky reefs are the southern limit of distribution for 96% of the tropical ichthyofauna of the western Atlantic. The Arvoredo Marine Biological Reserve is the only nearshore no-take marine-protected area (MPA) located in this transition zone. The main aim was to investigate how the populations of rocky reef fish species vary in density and biomass in space and over time, inside and outside the Arvoredo MPA. This study presents results based on a 9 year (2008-2017) underwater visual census monitoring study to evaluate the density and biomass of key fish species. Variations in density and biomass were detected for most species. Factors and mechanisms that may have influenced spatial variation are habitat structural complexity and protection from fisheries. Temporal variations, otherwise, may have been influenced by species proximity to their distributional limit, in synergy with density-dependent mechanisms and stochastic winter temperature oscillations. The MPAs harbour higher density and biomass for most species. Nonetheless, a prominent temporal decline in the recruitment of Epinephelus marginatus calls into question the continuous effectiveness of the MPA.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.14441DOI Listing

Publication Analysis

Top Keywords

density biomass
20
variations density
8
rocky reef
8
reef fish
8
transition zone
8
nearshore no-take
8
no-take marine-protected
8
marine-protected area
8
fish species
8
density
5

Similar Publications

The distribution characteristics of marine litter in the intertidal zone of Lvhua Island and its impact on the macrobenthic community structure.

Mar Environ Res

September 2025

College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Engineering Technology Research Center of Marine Ranching, Shanghai Ocean University, Shanghai, 201306, China; Comprehensive Workstation for Marine Ranching in the East China Sea Region, Expert Consul

Marine litter typically originates from human discards at sea or enters the ocean through land-based pathways such as surface runoff and natural disasters. The extensive accumulation of plastic litter poses severe threats to marine life. In August 2024, a specialized survey was conducted to investigate the distribution characteristics of marine litter and macrobenthic communities across four intertidal zones on Lvhua Island (XIAO'AO, DA'AO, FANGANG, and SHIZIKENG).

View Article and Find Full Text PDF

Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.

View Article and Find Full Text PDF

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Waste biomass has aroused increasing interest in the production of low-cost materials for CO adsorption and supercapacitors. One of the primary facets in this regard is to develop nanoporous carbons with controlled porosity and high surface area. Herein, waste wood chips are used to synthesize nanoporous biocarbons via a solid-state KOH-based chemical activation.

View Article and Find Full Text PDF

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF