98%
921
2 minutes
20
The d-wave superconductor CeCoIn_{5} has been proposed as a strong candidate for supporting the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state near the low-temperature boundary of its upper critical field. Neutron diffraction, however, finds spin-density-wave (SDW) order in this part of the phase diagram for field in the a-b plane, and evidence for the SDW disappears as the applied field is rotated toward the tetragonal c axis. It is important to understand the interplay between the SDW and a possible FFLO state in CeCoIn_{5}, as the mere existence of an SDW does not necessarily exclude an FFLO state. Here, based on a model constructed on the basis of available experiments, we show that an FFLO state competes with an SDW phase. The SDW state in CeCoIn_{5} is stabilized when the field is directed close to the a-b plane. When the field is rotated toward the c axis, the FFLO state emerges, and the SDW phase disappears. In the FFLO state, the nodal planes with extra quasiparticles (where the superconducting order parameter is zero) are perpendicular to the field, and in the SDW phase, the quasiparticle density of states is reduced. We test this model prediction by measuring heat transported by normal quasiparticles in the superconducting state. As a function of field, we observe a reduction of thermal conductivity for field close to the a-b plane and an enhancement of thermal conductivity when field is close to the c axis, consistent with theoretical expectations. Our modeling and experiments, therefore, indicate the existence of the FFLO state when field is parallel to the c axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.217001 | DOI Listing |
Nat Commun
August 2025
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is an unusual superconducting phase that survives beyond the Pauli paramagnetic limit through spatial modulation of the order parameter. An even more exotic variant-the orbital FFLO state-was recently reported in thin flakes of 2H-NbSe, involving the interplay of Ising spin-orbit coupling and orbital pair breaking. Here, we report thermodynamic signatures consistent with an orbital FFLO state in bulk 2H-NbSe, based on high-resolution magnetization and torque measurements under strictly parallel to the NbSe basal plane.
View Article and Find Full Text PDFNat Commun
July 2025
Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan.
Two-dimensional (2D) superconductors are known for their novel emergent phenomena, however, lack of experimental probes beyond resistivity has hindered further exploration of diverse superconducting states. Bulk 2D superconductors, with superconducting layers separated by non-superconducting layers, offer a unique opportunity to break this limit. Here, we synthesized a single crystal of misfit layered compound (PbSe)(NbSe), composed of alternately stacked tri-layer NbSe and non-superconducting block layers with incompatible unit cells.
View Article and Find Full Text PDFNano Lett
October 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
J Phys Condens Matter
January 2024
Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
We report the first theoretical investigation of the spectroscopic, electrical and optical transport signatures of-wave Pauli limited superconductors, based on a non perturbative numerical approach. We demonstrate that the high magnetic field low temperature regime of these materials host a finite momentum paired superconducting phase. Multi-branched dispersion spectra with finite energy superconducting gaps, anisotropic segmentation of the Fermi surface and spatial modulations of the superconducting order characterizes this finite momentum paired phase and should be readily accessible through angle resolved photo emission spectroscopy, quasiparticle interference and differential conductance measurements.
View Article and Find Full Text PDFSci Rep
July 2023
Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662, Warsaw, Poland.
We investigate the life cycle of the large amplitude Higgs mode in strongly interacting superfluid Fermi gas. Through numerical simulations with time-dependent density functional theory and the technique of the interaction quench, we verify the previous theoretical predictions on the mode's frequency. Next, we demonstrate that the mode is dynamically unstable against external perturbation and qualitatively examine the emerging state after the mode decays.
View Article and Find Full Text PDF