Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

2D layered germanium selenide (GeSe) with p-type conductivity is incorporated with asymmetric contact electrode of chromium/Gold (Cr/Au) and Palladium/Gold (Pd/Au) to design a self-biased, high speed and an efficient photodetector. The photoresponse under photovoltaic effect is investigated for the wavelengths of light (i.e. ~220, ~530 and ~850 nm). The device exhibited promising figures of merit required for efficient photodetection, specifically the Schottky barrier diode is highly sensitive to NIR light irradiation at zero voltage with good reproducibility, which is promising for the emergency application of fire detection and night vision. The high responsivity, detectivity, normalized photocurrent to dark current ratio (NPDR), noise equivalent power (NEP) and response time for illumination of light (~850 nm) are calculated to be 280 mA/W, 4.1 × 10 Jones, 3 × 10 W, 9.1 × 10 WHz and 69 ms respectively. The obtained results suggested that p-GeSe is a novel candidate for SBD optoelectronics-based technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286883PMC
http://dx.doi.org/10.1038/s41598-020-66263-8DOI Listing

Publication Analysis

Top Keywords

efficient photodetection
8
asymmetric electrode
4
electrode incorporated
4
incorporated gese
4
gese self-biased
4
self-biased efficient
4
photodetection layered
4
layered germanium
4
germanium selenide
4
selenide gese
4

Similar Publications

Bandgap-Tailored (BiSb)Se Thin Films Enabling Fast Broadband Near-Infrared Photodetection and Imaging.

Small

September 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic

Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.

View Article and Find Full Text PDF

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF

Dual sulfur sources redox dynamics guided growth of 〈hk1〉-oriented SbS microrods: lattice strain modulation for ultra-low dark current.

J Colloid Interface Sci

September 2025

College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:

Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.

View Article and Find Full Text PDF

Rational design of an ultra-high-gain MoS phototransistor enabling room-temperature detection of few-photon signals and attomolar-level immunosensing.

Sci Bull (Beijing)

August 2025

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:

Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.

View Article and Find Full Text PDF

High-quality narrow black phosphorus nanoribbons with nearly atomically smooth edges and well-defined edge orientation.

Nat Mater

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Integrated Circuits, Shanghai Jiao Tong University, Shanghai, China.

Black phosphorus nanoribbons (BPNRs) with a tunable bandgap and intriguing electronic and optical properties hold strong potential for logic applications. However, efficiently producing high-quality BPNRs with precise control over their size and structure remains a great challenge. Here we achieved high-quality, narrow and clean BPNRs with nearly atomically smooth edges and well-defined edge orientation at high yield (up to ~95%) through the sonochemical exfoliation of the synthesized bulk BP crystals with a slightly enlarged lattice parameter along the armchair direction.

View Article and Find Full Text PDF