Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot ( Race T4.

Int J Mol Sci

Department of Horticultural Science, Mountain Horticultural Crops Research & Extension Center, North Carolina State University, Mills River, NC 28759, USA.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial spot (BS) is one of the most devastating foliar bacterial diseases of tomato and is caused by multiple species of . We performed the RNA sequencing (RNA-Seq) analysis of three tomato lines with different levels of resistance to race T4 to study the differentially expressed genes (DEGs) and transcript-based sequence variations. Analysis between inoculated and control samples revealed that resistant genotype accession PI 270443 had more DEGs (834), followed by susceptible genotype tomato ( L) breeding line NC 714 (373), and intermediate genotype tomato breeding line NC 1CELBR (154). Gene ontology (GO) terms revealed that more GO terms (51) were enriched for upregulated DEGs in the resistant genotype PI 270443, and more downregulated DEGs (67) were enriched in the susceptible genotype NC 714. DEGs in the biotic stress pathway showed more upregulated biotic stress pathway DEGs (67) for PI 270443 compared to more downregulated DEGs (125) for the susceptible NC 714 genotype. Resistant genotype PI 270443 has three upregulated DEGs for pathogenesis-related (PR) proteins, and susceptible genotype NC 714 has one downregulated R gene. Sequence variations called from RNA-Seq reads against the reference genome of susceptible Heinz 1706 showed that chr11, which has multiple reported resistance quantitative trait loci (QTLs) to BS race T4, is identical between two resistant lines, PI 270443 and NC 1CELBR, suggesting that these two lines share the same resistance QTLs on this chromosome. Several loci for PR resistance proteins with sequence variation between the resistant and susceptible tomato lines were near the known resistance gene on chr11, and additional biotic stress associated DEGs near to the known resistance gene were also identified from the susceptible NC 714 line.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313073PMC
http://dx.doi.org/10.3390/ijms21114070DOI Listing

Publication Analysis

Top Keywords

resistant genotype
12
susceptible genotype
12
biotic stress
12
degs
9
bacterial spot
8
tomato lines
8
sequence variations
8
genotype
8
genotype tomato
8
tomato breeding
8

Similar Publications

Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.

Cell Physiol Biochem

September 2025

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, 10117 Berlin, Germany.

Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear.

View Article and Find Full Text PDF

Background: A significant surge in pertussis cases since early 2023 has raised serious public health concerns. To investigate the potential mechanisms contributing to this increased prevalence, we collected throat swab specimens from children exhibiting pertussis symptoms and conducted detailed molecular characterization.

Methods: All Bordetella pertussis (B.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF

Gepotidacin, a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial, was noninferior to nitrofurantoin in two pivotal trials (EAGLE-2 and EAGLE-3) in females with uncomplicated urinary tract infections (uUTIs). Using pooled data, gepotidacin activity and clinical efficacy were evaluated for subsets of molecularly characterized isolates in the microbiological Intent-to-Treat population. The subsets of isolates were characterized based on phenotypic/MIC criteria; all microbiological failure isolates were also characterized.

View Article and Find Full Text PDF

This study aims to assess whether endometriosis causally increases the risk of IBD through Mendelian randomisation (MR) analysis and to elucidate potential mechanisms using in vitro experiments. A two-sample Mendelian randomisation (MR) analysis was conducted using genome-wide association study datasets for endometriosis and IBD, including ulcerative colitis and Crohn's disease. Causal inference was assessed using inverse variance weighting, MR-Egger, and weighted median methods, with MR-PRESSO used to detect horizontal pleiotropy.

View Article and Find Full Text PDF